Скачать 1.86 Mb.
|
Рис. 27. Принципиальная схема корректора на дискретных элементах по схемотехнике ОУПри испытаниях усилителя следует использовать двухполярный стабилизированный источник питания с выходным напряжением ±15 В. Если монтаж выполнен правильно и элементы исправны, устройство работает без настройки и обеспечивает приведенные характеристики. Рис. 28. Печатная (а) и монтажная (б) платы корректора на дискретных элементах по схемотехнике ОУ Высококачественный корректор на усилителе с параллельной обратной связью. Известно, что применение параллельной обратной связи по напряжению формирует источник напряжения (выходное полное сопротивление которого близко к нулю). Это позволяет строить усилитель с хорошими нагрузочными характеристиками. Следует отметить, что усилитель с параллельной ОС также имеет лучшую, по сравнению с последовательной, переходную характеристику. Корректоры, построенные на базе усилителей с параллельной ОС, при простых схемных решениях позволяют получить довольно высокие технические характеристики. Высококачественный корректор на усилителе с параллельной обратной связью имеет следующие основные технические характеристики: Максимальное входное напряжение . ....... 40 мВ Максимальное выходное напряжение........ 4В Перегрузочная способность .......... 24 дБ Коэффициент усиления на частоте 1 кГц....... 100 Отклонение АЧХ от стандартной......... ±0,5 дБ Отношение сигнал-шум (невзвешенное) . . . . . . . 70 дБ Коэффициент гармоник, не более ......... 0,01% Напряжение питания............ ±15 В Ток потребления.............. 10 мА На рис. 29 приведена схема этого корректора. Он состоит из входного каскада на транзисторах VT1 — VT3 и двухтактного выходного каскада (транзисторы VT4 — VT7), работающего в режиме А. Входной каскад для получения максимального усиления выполнен по каскодной схеме на транзисторах VT2, VT3, с источником тока на полевом транзисторе VT1 в качестве его нагрузки. Усиление такого каскада на частоте 100 Гц составляет около 50 000, что дает возможность вводить глубокую ООС, уменьшающую искажение сигнала. Для согласования с нагрузкой используется двухтактный выходной каскад (транзисторы VT4, VT6 и VT5, VT7). Выходная мощность каскада оказывается достаточной для непосредственного подключения головных телефонов. В данном случае в качестве нагрузки можно использовать высокоомные головные телефоны, например, ТДС-5. В этом случае уровень громкости регулируют резистором R15. Необходимую частотную характеристику формируют цепи R5C5 и R8C6. Рис. 29. Принципиальная схема корректора с параллельной обратной связьюПечатная плата корректора (рис. 30) рассчитана на монтаж двух корректоров. Резисторы R2 и R11 — СПЗ-22, R15 — СПЗ-12а с экспоненциальной зависимостью сопротивления от угла поворота движка. Первоначально, устанавливая резистором R11 на положительной обкладке конденсатора С8 напряжение +7,5 В, необходимо сбалансировать корректор, Затем резистором R2 нужно добиться, чтобы коллекторный ток выходных транзисторов был равен 10 мА. После этого повторно проверить баланс и, если необходимо, вновь подстроить К.11. На этом налаживание заканчивается. Для питания корректоров во время налаживания следует использовать стабилизированный источник, обеспечивающий при напряжении 15 В ток не менее 100 мА. Рис. 30. Печатная (а) и монтажная (б) платы усилителя с параллельной обратной связью. МИКРОФОННЫЕ УСИЛИТЕЛИМикрофонные усилители предназначены для усиления слабых сигналов микрофона и согласования его с последующими усилительными каскадами звуковоспроизводящего тракта. Коэффициент усиления микрофонного усилителя выбирают таким образом, чтобы обеспечить на входе основного усилителя номинальный уровень напряжения от 200 до 400 мВ. При необходимости в микрофонный усилитель вводят частотную коррекцию, чтобы компенсировать неравномерность АЧХ используемого микрофона. Особенностями микрофонного усилителя являются: работа при малых уровнях входного сигнала (номинальная ЭДС, развиваемая разными типами микрофонов, составляет 0,1... 0,8 мВ); совместная работа с источником сигнала, имеющим низкое внутреннее сопротивление (500 ... 2000 Ом), которое остается постоянным в широком диапазоне рабочих частот. Основные сложности при разработке микрофонных усилителей связаны о достижением низкого уровня собственных шумов и минимальных нелинейных искажений. Формирование необходимой АЧХ особых трудностей не представляет. Собственные (внутренние) шумы применяемых в высококачественной звуке-технике электростатических (конденсаторных) и электродинамических (ленточных) микрофонов незначительны. Так, шумы электродинамических микрофонов очень малы и, как правило, не нормируются. Конденсаторные микрофоны имеют сравнительно более высокий уровень шумов, обычно указываемый в паспорте микрофона. Но даже для конденсаторных микрофонов уровень собственных шумов не превышает нескольких микровольт. Поэтому важно, чтобы собственные шумы микрофонного усилителя были малы. Как известно, для достижения малого уровня шумов на выходе усилителя необходимо уменьшать собственные шумы первого каскада и увеличивать полезный сигнал на его входе. Поскольку шумовые свойства усилительного каскада зависят от внутреннего сопротивления источника сигнала, при выборе режима работы транзистора в первом каскаде микрофонного усилителя необходимо учитывать внутреннее сопротивление микрофона. Например, для транзистора КТ3102 оптимальный коллекторный ток, при котором коэффициент шума минимален, составляет 100... 300 мкА при сопротивлении источника сигнала 1 кОм и 30... 60 мкА при сопротивлении 10... 100 кОм. По рекомендации Международной Электротехнической Комиссии номинальное входное сопротивление микрофонного усилителя, обеспечивающее наилучшее отношение сигнал-шум на его выходе, равно утроенному сопротивлению микрофона (Rвх = 3Rмк). В описанных далее конструкциях входное сопротивление усилителя 3,3 кОм, что является компромиссным решением для различных типов применяемых микрофонов. Номинальный диапазон частот микрофонного усилителя с учетом АЧХ используемого микрофона должен быть не хуже 20 Гц... 20 кГц при неравномерности ±2 дБ. Невзвешенное значение отношения сигнал-шум достаточно иметь примерно равным 60 дБ. Запас по перегрузочной способности (относительно номинальной чувствительности) должен быть не менее 30 дБ. Коэффициент гармоник в полосе частот должен составлять не более 0,1...0,2%. Автоматическая регулировка усиления, значительно сужающая динамический диапазон и используемая, как правило, в специальных усилителях (для усиления речи и т. п.), в рассматриваемых далее микрофонных усилителях не применяется. Микрофонные усилители имеют следующие параметры: максимальное входное напряжение [мВ] — наибольшее действующее значение синусоидального входного сигнала на частоте 1 кГц, при котором коэффициент гармоник выходного напряжения не превышает 0,5%; максимальное выходное напряжение [В] — наибольшее действующее значение выходного напряжения на частоте 1 кГц при коэффициенте гармоник не более 0,5%; перегрузочная способность, Кп [дБ] — отношение максимального входного напряжения к номинальному входному; коэффициент гармоник [%] — наибольшее значение коэффициента нелинейных искажений выходного сигнала, измеряемое в полосе частот 20... 20 000 Гц при номинальном выходном напряжении; отношение сигнал-шум (невзвешенное) [дБ] — отношение действующего значения номинального напряжения выходного синусоидального сигнала к действующему значению напряжения шума на выходе усилителя (измеряется без взвешивающих фильтров); номинальный диапазон [Гц] — диапазон частот, внутри которого нормированная АЧХ усилителя имеет неравномерность не более ±1,5 дБ. Для всех приводимых далее микрофонных усилителей номинальный уровень входных сигналов равен 1 мВ, выходное сопротивление не превышает 1 кОм, что обеспечивает хорошее их согласование с узлами, описанными далее, Микрофонный усилитель на микросхеме К548УН1. Наиболее просто требуемые характеристики микрофонного усилителя можно реализовать на основе микросхем. Специально спроектированная для звуковой техники микросхема К548УН1 позволяет легко получить требуемые параметры при небольшом числе внешних элементов. Микрофонный усилитель на этой микросхеме имеет следующие основные технические характеристики: Входное напряжение: номинальное............ 1 мВ максимальное............ 30 мВ Выходное напряжение: номинальное............ 200 мВ максимальное............ 6000 мВ Перегрузочная способность, не менее ...... 30 дБ Коэффициент гармоник, не более....... 0,2% Отношение сигнал-шум (невзвешенное)..... 60 дБ Номинальный диапазон частот........ 20 ... 20 000 Гц Напряжение питания........... 24 В Ток потребления............ 10 мА Схема одного канала этого усилителя приведена на рис. 31. Микросхема DA1 включена по схеме неинвертирующего усилителя. Отрицательная обратная связь по постоянному току (через резисторы R3, R4) определяет режим работы микросхемы. Усиление по переменному току определяется соотношением резисторов R2 и R4. Для уменьшения уровня шума (примерно в 1,4 раза) используется только один из транзисторов входного дифференциального каскада микросхемы, база второго (вывод 2 микросхемы DA1) соединена с общим проводом. Конденсаторы С1 и С4 служат для развязки по постоянному току источника сигнала и нагрузки, С5 устраняет паразитную связь по цепи питания. Микрофонный усилитель собран на унифицированной монтажной плате методом объемного монтажа. В устройстве используют резисторы МЛТ-0,125, конденсаторы КМ-4, КМ-б, К50-6. Чертеж унифицированной монтажной платы приведен на рис. 32. Рис. 31. Принципиальная схема микрофонного усилителя на микросхеме К548УН1 Рис. 32. Чертеж унифицированной монтажной платы Для проверки усилителя необходим стабилизированный источник питания с выходным напряжением 24 В, обеспечивающий ток в нагрузке не менее 15 мА, Если монтаж выполнен правильно, а детали исправны, усилитель работает практически без настройки. Микрофонный усилитель на микросхеме К153УД2. При отсутствии специальных микросхем (К548УН1А, К157УЛ1) для микрофонного усилителя вполне можно использовать ОУ на микросхеме К153УД2 общего применения. При этом ухудшится только отношение сигнал-шум, а остальные параметры останутся практически без изменений или даже несколько улучшатся. Такой микрофонный усилитель имеет следующие основные технические характеристики: Входное напряжение: номинальное............ It5 мВ максимальное............ 3000 мВ Выходное напряжение: номинальное............ 220 мВ максимальное............ 9000 мВ Перегрузочная способность, не менее...... 66 дБ Коэффициент гармоник, не более....... О gg% Отношение сигнал-шум (невзвешенное)...... 55 дБ Номинальный диапазон частот........ 20... 20 000 Гц Напряжение питания.......... ± l5 В Ток потребления............ J2 мА На рис. 33 показан усилитель, включенный по схеме инвертирующего усилителя. Неинвертирующий вход (вывод 3) микросхемы DA1 подключен к общему проводу, а на инвертирующий (вывод 2} подается ООС, раздельно по постоянному и переменному токам. Отрицательная обратная связь по постоянному току (через резистор R4) стабилизирует рабочую точку усилителя. Регулируемая ООС по переменному току (цепь R3, С2) обеспечивает нормальное функционирование усилителя, предохраняет его от перегрузки по входу. Если движок резистора R3 находится в крайнем левом по схеме положении, входное напряжение может достигать 3 В и при этом еще не наступает ограничение сигнала на выходе. При максимальном усилении (движок R3 в крайнем правом положении) ограничение выходного напряжения наступает при входном напряжении около 20 мВ. Конденсаторы С1 и С4 обеспечивают развязку по постоянному току на входе и выходе узла, С5 и С6 устраняют паразитную связь по цепи питания. Для монтажа микрофонного усилителя использованы унифицированная монтажная плата (см. рис. 32), резисторы МЛТ-0,125, СПЗ-12 или СПЗ-23 {R3), конденсаторы КМ-4, КМ-б, К53-1. Рис. 33. Принципиальная схема микрофонного усилителя на микросхеме К153УД2 Вместо микросхемы К.153УД2 можно использовать и другие ОУ общего применения с соответствующими цепями коррекции (К153УД1, К.140УД7, К140УД8 и т. п.). Для работы усилителя необходим стабилизированный двухполярный источник питания с напряжением +15 В, обеспечивающий ток в нагрузке не менее 15 мА. При правильно выполненном монтаже и исправных деталях узел работает без настройки. Микрофонный усилитель на ОУ с малошумящим транзистором на входе. На ОУ общего применения можно создать микрофонный усилитель, не уступающий по параметрам усилителю, построенному на базе специализированной микросхемы. Однако шумовые свойства такого усилителя получаются невысокими. Для уменьшения уровня шума, как и в случае предусилителя-корректо-ра, на входе микросхемы можно установить малошумящий транзистор. Микрофонный усилитель, сочетающий усилительные возможности ОУ и шумовые характеристики дискретного транзистора, приведен на рис. 34. Он имеет следующие основные технические характеристики: Входное напряжение: номинальное............ 1 мВ максимальное............ 45 мВ Выходное напряжение: номинальное . . . ......... 200 мВ максимальное............ 9000 мВ Перегрузочная способность, не менее...... 33 дБ Коэффициент гармоник, не более ....... 0,06% Отношение сигнал-шум (невзвешенное)..... 6G дБ Номинальный диапазон частот........ 20 ... 20 000 Гц Напряжение питания.......... ±15 В Ток потребления............ 15 мА Усилитель может работать как с низкоомным, так и с высокоомным микрофоном. Входной каскад на малошумящем транзисторе VT1 питается от параметрического стабилизатора напряжения (стабилитрон VD1, резистор R10), который одновременно обеспечивает необходимую фильтрацию пульсаций питающего напряжения. Для защиты от помех мощных радиостанций сигнал на базу транзистора VT1 поступает через фильтр нижних частот R4C2 с частотой среза около 3 МГц. Режим работы транзистора стабилизирован глубокой ООС по постоянному току (с выхода микросхемы DA1 через резистор R11 в цепь эмиттера транзистора VT1). Необходимый коэффициент усиления (5... 300) устанавливают подстроечным резистором R7. Благодаря большому запасу усиления и глубокой ООС коэффициент гармоник не превышает сотых долей процента, а АЧХ усилителя линейна во всем звуковом диапазоне. Монтаж микрофонного усилителя производят на унифицированной монтажной плате методом объемного монтажа (см. рис. 32). Вместо транзистора КТ3102Е можно использовать КТ3102В, К.Т315Б, вместо микросхемы К153УД2 — К153УД1, К140УД7, К140УД8 и другие с соответствующими цепями коррекции. Резисторы — МЛТ-0,125, СПЗ-22(R7), конденсаторы — КМ-4, КМ-6, К53-1. Рис. 34. Принципиальная схема микрофонного усилителя на ОУ Налаживание заключается в проверке правильности монтажа и установке подстроечным резистором R7 необходимого усиления. Для этого, подключив стабилизированный источник напряжением ±15 В, обеспечивающий ток в нагрузке не менее 20 мА, на вход узла с генератора звуковой частоты подают сигнал частотой 1 кГц и напряжением 1 мВ. Подстроечным резистором R7 напряжение на выходе микрофонного усилителя устанавливают в пределах 200... 250 мВ. ФИЛЬТРЫЧастотная характеристика высококачественных усилителей 34 простирается от единиц герц до сотни килогерц, что обеспечивает очень малые линейные искажения. Но это же обстоятельство приводит к усилению таких нежелательных явлений, как прохождение помех от близлежащих радиостанций, усиление гармоник ограниченного сигнала и остаточных напряжений УПЧ приемника, помех от вибраций двигателя электрофона, напряжения фона от сети и т. п. Поэтому необходимо, чтобы звуковой сигнал, проходящий через высококачественный звуковоспроизводящий тракт, был очищен от всех сопутствующих помех. Для этой цели в состав звуковоспроизводящего тракта вводятся специальные фильтры нижних (ФНЧ) и верхних (ФВЧ) частот. Их задача — обеспечить эффективное подавление составляющих фона, шумов и паразитных сигналов в той части диапазона, где отсутствуют составляющие полезного сигнала. К важнейшим показателям, характеризующим свойства фильтров, как и других функциональных узлов звуковоспроизводящего тракта, относятся: величина, характеризующая способность фильтра усиливать сигнал; степень вносимых фильтром искажений; динамический диапазон; входные и выходные данные. Фильтры характеризуются параметрами, аналогичными принятым для микрофонных усилителей. И, кроме того, еще двумя специфичными показателями — частотой среза и крутизной спада АЧХ. Частота среза [Гц] — точка перегиба АЧХ фильтра, в которой коэффициент передачи изменяется на 3 дБ. Для фильтров, построенных на однозвенных RG цепях, частота среза fср=1/(2пRС). Крутизна спада АЧХ характеризует скорость спада АЧХ фильтра от точки перегиба. Обычно она измеряется в децибелах на октаву. Рис. 35. Электрическая схема фильтра низких (а) и высоких (б) частот Амплитуда на выходе RC фильтра убывает от точки перегиба пропорционально 1/f. Поэтому в пределах одной октавы (соответствует изменению частоты вдвое) она уменьшается вдвое, т. е. RC фильтр обеспечивает крутизну спада АЧХ 6 дБ на октаву. Если последовательно включить два RC звена, крутизна возрастает до 12 дБ на октаву, если три — до 18 и т. д. Однако это справедливо при условии, когда реактивная составляющая полного, выходного сопротивления каждого RC звена равна нулю, а входного — бесконечности. Один из способов устранения взаимного влияния каскадов состоит в том, чтобы каждый последующий каскад имел значительно большее полное входное сопротивление, чем предыдущий. Еще эффективнее использовать в качестве межкаскадных буферов активные фильтры на транзисторах или ОУ. Полосовой фильтр на пассивных элементах. На рис. 35,а показан ФНЧ на основе Г-образного RC полузвена. Напряжение на выходе такого фильтра неизменно от самых нижних частот до частоты среза fcp; f0p = 1/(2пR1C1). При дальнейшем увеличении частоты выходное напряжение уменьшается пропорционально 1/f, т. е. с крутизной около 6 дБ на октаву. Как отмечалось, параметры пассивных RC фильтров весьма критичны к сопротивлению нагрузки Rн и источника сигнала Rг. Расчетные характеристики фильтров достигаются при сопротивлении нагрузки Ra, стремящемся к бесконечности и сопротивлении источника сигнала Rr, стремящемся к нулю. Точный расчет фильтров с учетом конечных значений Ra и 7?г довольно громоздок, но для приближенных расчетов частоты среза можно воспользоваться и приведенной ранее формулой. Практически достаточно, чтоб выполнялись соотношения: Rи = (10... 20) R1, Rг = (0,05 ..,0,1) R1. Если в схеме на рис. 35,а поменять местами резистор и конденсатор, то получается RC ФВЧ (рис. 35,6). В отличие от ФНЧ, ФВЧ пропускает частоты выше частоты среза fcp, ниже этой частоты АЧХ имеет спад с наклоном 6 дБ на октаву. Соединяя каскадно ФВЧ и ФНЧ, можно построить полосовой фильтр. Практическая схема полосового фильтра показана на рис. 36. Он имеет следующие основные технические характеристики: Входное напряжение: номинальное............ 0,2 В максимальное............ 4В Выходное напряжение: номинальное............ 0,16 В максимальное............ 3,2 В Коэффициент передачи в полосе пропускания .... 0,8 Перегрузочная способность, не менее...... 26 дБ Частота среза............ 0,1 и 7 кГц Крутизна спада АЧХ........... 6 дБ на октаву Коэффициент гармоник, не более....... 0,08% Отношение сигнал-шум (невзвешенное)..... 70 дБ Напряжение питания........... 15 В Ток потребления............ 3 мА Рис. 36. Принципиальная схема низкочастотного и высокочастотного фильтров на пассивных элементах Фильтр нижних частот (его включают кнопкой SB1) с частотой среза около 7 кГц состоит из резистора R1 и конденсатора С1. Для уменьшения влияния входного сопротивления последующих каскадов на параметры фильтра используется эмиттерный повторитель на транзисторе VT1, входное сопротив-, ление которого с учетом делителя R2, R3 образует нагрузку фильтра. Фильтр верхних частот с частотой среза около 100 Гц образован конденсатором С2 и входным сопротивлением каскада на транзисторе VT1. Его включают кнопкой SB2. Конденсаторы СЗ и С4 используются для развязки по постоянному току каскада на транзисторе VT1. Поскольку сами фильтры состоят из пассивных цепей, то такие параметры, как максимальное входное напряжение, коэффициент гармоник, перегрузочная способность и т. п., определяются целиком последующими каскадами (в данном случае эмиттерным повторителем). Полосовой фильтр собран на унифицированной монтажной плате. В нем использованы резисторы МЛТ-0,125, конденсаторы КМ-5, К53-1. Желательно, чтобы точность элементов, входящих непосредственно в фильтры (R1, C1, C2), была не хуже 2%. Вместо транзистора КТ3102В можно использовать также транзисторы КТ315, КТ342, КТ203. В качестве переключателей SВ1, SB2 подойдут любые на два положения, например П2К. Для проверки работы фильтра необходим стабилизированный источник питания напряжением 15 В и током не менее 5 мА. При монтаже без ошибок и «справных элементах фильтр практически работает без настройки. Чтобы получить точное значение частот среза, поступают следующим образом. В ФНЧ резистор R1 временно заменяют переменным резистором, параллельно С1 подключают осциллограф или вольтметр переменного тока. На вход фильтра с генератора звуковых частот подается сигнал частотой, равной fcp. Подстраивая переменный резистор, добиваются, чтобы напряжение на С1 стало равным 0,7 Uвх. После этого переменный резистор заменяют на соответствующий постоянный. Настройка ФВЧ производится аналогично подбором конденсатора С2. Напряжение контролируют на выходе фильтра. Фильтр верхних частот на ОУ К153УД2. Пассивные RC фильтры имеют значительное затухание, малую крутизну спада АЧХ, а сама АЧХ зависит от внутреннего сопротивления источника сигнала и нагрузки в пределах полосы пропускания. Для улучшения параметров RC фильтров к ним присоединяют активные элементы — транзисторы или ОУ, работающие в простейшем случае по схеме повторителя. Так как повторитель не меняет фазы входного сигнала, то пассивное RC звено включают в цепь ПОС. Этим частично компенсируют потери сигнала и повышают крутизну спада АЧХ всего фильтра. Сопротивление резисторов и емкость конденсаторов в активных фильтрах сравнительно небольшие даже на очень низких частотах, вследствие чего конструкция активных фильтров получается компактной. Фильтр верхних частот на ОУ К153УД2 имеет следующие основные технические характеристики: Входное напряжение: номинальное........... 0,2 В максимальное.......... 8В Выходное напряжение: номинальное........... 0,19 В максимальное.......... 7,6 В Коэффициент передачи в полосе пропускания . . 0,95 Перегрузочная способность, не менее . . . . 32 дБ Частота среза........... 40 и 100 Гц Крутизна спада АЧХ......... 6 и 12 дБ на октаву Коэффициент гармоник, не более...... 0,07% Отношение сигнал-шум (невзвешенное) . . . . 66 дБ Напряжение питания......... ±15В Ток потребления . . . . ,..... 10 мА На рис. 37 приведена схема этого ФВЧ. Он состоит из последовательно соединенных пассивного RC ФВЧ на основе Г-образного звена C2R2 и собственно активного C3C4R3R4DA1 ФВЧ второго порядка. Такой фильтр (или фильтр Баттерворта) обладает максимально плоской АЧХ в пределах полосы пропускания. При нажатии на кнопку SB1 включается пассивный RC фильтр C2R2R4 с частотой среза около 100 Гц, имеющий крутизну спада 6 дБ на октаву. Нажатие на кнопку SB2 приводит к включению активного ФВЧ. Точный расчет такого фильтра сложен, но при некоторых допущениях расчет упрощается. Например, принимая СЗ=С4 = С, R3=R4/2, R4 можно приближенно определить по формуле: R4 = 0,707/(пfСР С). В данном случае фильтр имеет частоту среза около 40 Гц. Крутизна спада его АЧХ 12 дБ на октаву. При нажатии на обе кнопки включаются пассивный и активный фильтры, при этом ниже частоты 20 Гц наклон АЧХ увеличивается до 18 дБ на октаву. Рис. 37. Принципиальная схема высокочастотного фильтра на ОУ К153УД2 Для монтажа фильтра использована унифицированная плата. Переключатели SB1 и SB2 могут быть любого типа на два положения, например П2К Номиналы конденсаторов и резисторов, входящие в фильтр, должны иметь точность 2%. Вместо микросхемы К.153УД2 можно использовать любые ОУ с соответствующими цепями коррекции, например, К153УД1, К140УД7, К140УД8. Для проверки работы фильтра необходим стабилизированный двухполяр-ный источник питания напряжением ±15 В и током не менее 10 мА. При использовании в фильтре элементов с точностью не хуже 2% настройка не требуется. Если такие детали подобрать не удалось, поступают следующим образом. Вначале, пользуясь рекомендациями по настройке полосового фильтра, настраивают пассивный RC фильтр C2R2R4 (кнопка SB1 нажата). Затем, отключив пассивный RC фильтр, включают активный. Подбирая конденсаторы СЗ и С4, добиваются, чтобы напряжение на выходе фильтра на частоте среза (fcp = 40 Гц) составляло 0,7 Uвх. На этом настройка заканчивается. Фильтр нижних частот на ОУ К153УД2 (рис. 38). Он имеет следующие основные технические характеристики: Входное напряжение: номинальное....... . .... . . 0,2 В максимальное.......... 8В Выходное напряжение: номинальное........... 0,19 В максимальное.......... 7,6 В Коэффициент передачи в полосе пропускания . . 0,95 Перегрузочная способность, не менее .... 32 дБ Частота среза........... 10 и 20 кГц Крутизна спада АЧХ......... 6 и 12 дБ на октаву Коэффициент гармоник, не более...... 0,07% Отношение сигнал-шум (невзвешенное) .... 66 дБ Напряжение питания......... ±15 В Ток потребления.......... 10 мА Рис. 38. Принципиальная схема низкочастотного фильтра на ОУ К153УД2 Если поменять местами резисторы и конденсаторы, то ФВЧ (см. рис. 37) преобразуется в ФНЧ (рис. 38). Элементы R2, С2, С4 образуют пассивный ФНЧ с крутизной спада АЧХ 6 дБ на октаву и частотой среза около 10 кГц, а элементы R3, R4, СЗ, С4, DA1 входят в активный ФНЧ с наклоном спада АЧХ 12 дБ на октаву и частотой среза около 20 кГц. Упрощенный расчет активного фильтра можно-произвести, принимая R3=R4=R и СЗ=2С4; емкость! конденсатора С4 определяют по формуле: C4 = 0,707/(2пfCpR). Одновременное включение активного и пассивного фильтров обеспечивает на частотах выше 20 кГц крутизну спада АЧХ фильтра 18 дБ на октаву. Конструкция и детали в ФНЧ такие же, как и в ФВЧ на ОУ К153УД2. Фильтр налаживают в такой же последовательности, что и предыдущий фильтр. Частоты среза устанавливают, подбирая резисторы R2 — R4. РЕГУЛЯТОРЫ ГРОМКОСТИ, БАЛАНСАИ РЕЖИМА «ИНТИМ» Регуляторы громкости являются неотъемлемой частью любого звуковоспроизводящего устройства и предназначены для регулирования уровня звучания акустических систем при воспроизведении звуковых сигналов. Для стереофонических систем обязательным является также регулятор стереобаланса, который служит для плавного изменения соотношения уровней звучания правого и левого каналов, позволяя перемещать в пространстве стереозону. Нередко в современных звуковоспроизводящих устройствах также используют режим «Интим» или « — 20 дБ», снижающий уровень сигнала скачком в 10 раз что создает большие эксплуатационные удобства (при разговоре по телефону, контрольном прослушивании, выборе музыкальных программ и т. п.). Известно, что из-за особенностей органов слуха человека при уменьшении уровня громкости наблюдается ухудшение восприятия низших и высших звуковых частот. Поэтому обычно применяют тонкомпенсированные регуляторы громкости, которые одновременно с уменьшением или увеличением громкости изменяют АЧХ усилительного устройства таким образом, чтобы она соответст-; вовала широко известным кривым равной громкости [8]. Стандартизированные кривые равной громкости приводятся в рекомендациях Международной организации стандартизации (ИСО). Схемные решения регуляторов громкости и баланса базируются на резне-тивных делителях напряжения, в качестве которых используют переменные или I постоянные резисторы. К переменным резисторам предъявляют следующие тре-: бования: близость к нулю минимального регулируемого сопротивления; плавное, (без скачков) изменение сопротивления при перемещении движка резисторов с функциональной зависимостью, подчиняющейся показательному закону (группа В); отсутствие шумов и щелчков; идентичность изменения сопротивлений при их регулировании (для сдвоенных регуляторов в стереофонических системах). Пределы плавного регулирования громкости определяются диапазоном плавного изменения сопротивления используемых переменных резисторов. Применяемые в УЗЧ резисторы СПЗ-12 имеют диапазон плавного изменения до 60 дБ, СПЗ-12а-1 — до 80 дБ. Однако промышленные потенциометры не всегда удовлетворяют перечисленным требованиям. Разбаланс сопротивлений сдвоенных переменных резисторов типов СПЗ-23, СПЗ-12, СПЗ-4, наиболее часто используемых для тонкомпенсированной регулировки громкости, достигает ±3 дБ, а изменение их сопротивления из-за люфта движка или оси ±6 дБ. Это приводит к разбалансу уровней сигналов в каналах стереоусилителя при регулирований громкости и к рассогласованию АЧХ, особенно заметному на малой и средней громкости. От указанных недостатков свободен сдвоенный ступенчатый тонкомпенсированный регулятор громкости, построенный на дискретных резисторах и многопозиционных переключателях [9]. В последние годы с развитием интегральной технологии и созданием новой элементной базы получают распространение электронные регуляторы громкости и баланса на полевых транзисторах, КМОП коммутаторах, КМОП мультиплексерах, а также специальных микросхемах (например, К174УН12). Кроме общепринятых характеристик для каскада регулирования специфической является глубина регулирования громкости — отношение номинального выходного напряжения к напряжению на выходе при положении регулятора громкости, соответствующем минимальной громкости в пределах плавной регулировки, выраженное в децибелах. Рассмотрим варианты схем регулировки громкости и баланса с применением различной элементной базы. Типовой каскад регулирования громкости и баланса на переменных резисторах групп В и А. В качестве простейшего регулятора громкости может служить обычный переменный резистор, включенный по схеме делителя напряжения. Однако некоторые особенности слухового восприятия звуковых давлений-различных частот требуют усложнения этого каскада в усилителях высокого класса. Чувствительность уха, максимальная на средних частотах, падает нг низших и высших частотах. При увеличении уровня громкости чувствительность уха в области низших частот заметно возрастает. В области высших частот чувствительность также возрастает, но ее рост значительно зависит от индивидуальных особенностей слуха каждого человека (особенно заметна зависимость восприятия высших частот от возраста). Иначе говоря, изменение уровня звукового давления вызывает изменение спектра сигнала, воспринимаемого человеком. Поэтому, чтобы субъективное восприятие громкости изменялось во всем спектре частот пропорционально, необходимо скорректировать частотную характеристику регулятора громкости (ввести так называемую тонкомпенсацию) таким образом, чтобы с уменьшением уровня звукового давления увеличивался подъем в области низших и высших частот. Кроме того, желательно равномерно изменять относительную громкость при линейном перемещении регулирующего узла. Из экспериментов известно [10], что субъективное ощущение приращения громкости зависит от уровня звукового давления. При малых уровнях сигнала одинаковому приращению звукового давления субъективно соответствует большее приращение громкости, чем при больших уровнях сигнала. Поэтому для получения равномерной субъективной регулировки громкости требуется нелинейное регулирование звукового давления. Этим требованиям отвечают переменные резисторы с показательной зависимостью( группы В), имеющие отводы для тонкомпенсации. При регулировке стереобаланса, чтобы сохранить постоянство общего звукового давления в обоих каналах, ослабление уровня сигнала в одном канале необходимо компенсировать увеличением уровня сигнала в другом. Для этога можно использовать широко распространенные переменные резисторы с линейной зависимостью (группы А). Применение специально разработанных для регулировка стереобаланса потенциометров с зависимостью (группы Е/И) позволяет уменьшить потери сигнала и субъективно более плавно регулировать стереобаланс. Рис. 39. Принципиальная схема регуляторов громкости и баланса на потенциометрах типа В и А На рис. 39 приведена схема регулятора громкости, в которой учтены сделанные замечания. Он имеет следующие основные технические характеристики: Номинальное входное напряжение......... 200 мВ Номинальное выходное напряжение........ 140 мВ Глубина регулировки громкости......... 40 дБ Тонкомпенсация (при уровне громкости — 30 дБ) на частоте: 100 Гц................ 6 дБ 10 кГц................ 4 дБ Регулировка стереобаланса........... ±6 дБ Резистор R1 и соответствующий ему в другом канале уменьшают взаимное влияние каналов в режиме «Моно». Резистор R2 с зависимостью А обеспечивает регулировку стереобаланса. Последовательно включенный резистор R3 позволяет уменьшить потери сигнала до 3 дБ (при его отсутствии потери возрастают до б дБ). Кнопкой SB2 включают резистивный делитель R4, R5, уменьшающий сигнал в 10 раз. Громкость регулируют переменным резистором R7, к отводу которого (при нажатой кнопке SB3) подключается цепь тонком-пенсации. Узел регулировок собран на выводах переменных резисторов и переключателей П2К. Монтаж выполнен экранированным проводом МГШВЭ-0,2. Регулятор стереобаланса — СПЗ-12г с зависимостью А; регулятор громкости — СПЗ-12д с зависимостью В; остальные резисторы МЛТ-0,25; конденсаторы КМ-5, КМ-6, переключатели — П2К с независимой фиксацией. Налаживание узла в основном состоит в проверке правильности монтажа. Регулятор громкости и баланса на переключателях галетного типа. Как уже указывалось, разбаланс сопротивлений сдвоенных переменных резисторов достигает ±6 дБ, что вызывает разбаланс уровней сигналов в каналах и рассогласование АЧХ при введении тонкомпенсации. Коэффициент усиления каналов можно выравнить регулятором стереобаланса, но сбалансировать АЧХ с помощью обычных органов управления не удается. Кроме того, нередко бывает довольно сложно найти сдвоенный резистор с необходимым номиналом и законом регулирования громкости. От указанных недостатков свободен регулятор громкости на базе галетного переключателя, позволяющий создать необходимый закон регулирования и при попарном подборе резисторов делителя иметь незначительный разбаланс каналов. Как известно, использование для регулировки стереобаланса переменных резисторов с линейной зависимостью вызывает значительное ослабление сигнала (около 6 дБ). Применение специальных резисторов с зависимостью Е/И не всегда возможно из-за отсутствия необходимых номиналов. Построение регулятора баланса на базе галетного переключателя также позволяет легко получить «переменный резистор» нужного номинала с требуемым законом регулирования. С учетом сказанного, разработан регулятор громкости и баланса с применением переключателей галетного типа, схема одного канала которого показана на рис. 40. Он имеет следующие основные технические характеристики: Номинальное входное напряжение......... 200 мВ Номинальное выходное напряжение........ 200 мВ Глубина регулировки громкости . . . . . . . . , 60 дБ Тонкомпенсация (при уровне громкости — 40 дБ) на частоте 100 Гц................ ±8 дБ Регулировка стереобаланса........... ±8 дБ Регулятор громкости состоит из делителя на резисторах Rl — R22 и галетного переключателя SA1 на 23 положения. Расчет такого регулятора громкости можно произвести следующим образом. Для любого положения движка переключателя затухания а„ в децибелах определяется как где R — общее требуемое сопротивление делителя; n — номер положения движка переключателя. Выбрав значения R (из условия согласования с усилительным каскадом) и затухания ап для каждого положения переключателя, это уравнение можно решить для каждого резистора: где n=2, 3, ... При равномерном шаге затухания ап = аi — (n — 1) Да, где ai — максимальное затухание делителя регулятора (выбирается из условия необходимой глубины регулирования); Да — шаг затухания; Дa=a1/(N — 1), где N — максимальное число положений движка переключателя. Рассчитанные сопротивления регулятора громкости при R = 10 кОм, ai = =60 дБ и N=23 приведены в табл. 2. С учетом особенностей слухового восприятия шаг затухания Да первых трех положений переключателя выбран равным 6 дБ, следующих трех — 4 дБ, остальных — 2 дБ. Резистор R23 и соответствующий ему во втором канале служат для уменьшения взаимного влияния каналов и для выравнивания звукового давления в режиме «Моно». Регулятор баланса выполнен на резисторах R24 — R29 и переключателе SA2. Ценя тонкоррекции Cl, C2, R32 подключают кнопкой SB3. Рис. 40. Принципиальная схема регулятора громкости и баланса на переключателях галетного типа |
Техническое задание на кип. Требования к условиям размещения оборудования Схемы принципиальные электрические питания (включая схемы резервирования питания, схемы ибп, схемы питания шкафов и пультов) |
19. Принципиальные электрические схемы Поскольку невозможно в данном Руководстве привести все принципиальные схемы за каждый год выпуска, ниже приводятся наиболее типичные... |
||
Кабардино-балкарский государственный университет практические навыки педиатра Практические навыки педиатра. Часть – Изд. 2-е, перер., доп. – Нальчик: Каб. Балк ун-т, 2006. – 120 с |
Проект Цель изучения темы – формирование у студентов профессиональных умений диагностирования рассеянного склероза, назначения схемы лечения... |
||
Инструкция дается для наиболее распространенной схемы "замок-вкладыш" Инструкция дается для наиболее распространенной схемы "замок-вкладыш" по длинной стороне панели и "замок-защелка" по короткой; отличия... |
Схемы подсоединения пульта управления med 2000 Декабрь 1998 г Внимание: приведенные здесь схемы и цвета проводов оригинальных устройств следует рассматривать как чисто иллюстративными из-за возможных... |
||
Инструкция по монтажу и эксплуатации Уважаемый покупатель Поздравляем Вас с выбором высококачественного продукта фирмы Immergas, произведенного в полном соответствии с последними требованиями... |
Гидравлическая литьевая машина Kuasy 170/55-i-40, документация по... Гидравлическая литьевая машина Kuasy 170/55-i-40, документация по эксплуатации, блок-схемы последовательности операций по режимам,... |
||
Практические занятия по исторической геологии Практические занятия по исторической геологии. – Казань: Казанский государственный университет, 2004. – 72 с |
Методические рекомендации для подготовки к семинарским (практическим)... Практические занятия по Особенной части уголовного права помогают закрепить теоретические знания, полученные на лекциях, семинарах... |
||
Технический паспорт и инструкция по эксплуатации введение Мы уверены, что Вы будете довольны Вашим выбором, так как нашей целью является поставка высококачественного, надёжного и современного... |
Содержание Введение Генеральный (ситуационный) план пс «Каюковская»... Место прохождения преддипломной практики «Когалымские электрические сети» филиал «Тюменьэнерго». В состав ОАО «Тюменьэнерго» входит... |
||
Практические навыки дерматовенеролога часть I учебно-методическое... Учебно-методические указания «Практические навыки дерматовенеролога» составлены на основе типового учебного плана и программы специализации... |
Инструкция по эксплуатации дорогие покупатели Пожалуйста, прочитайте и обязательно следуйте инструкции по эксплуатации. Эта роскошная надувная кровать произведена из высококачественного... |
||
Отчет о научно-исследовательской работе Анализ существующего состояния... Разработка схемы теплоснабжения мо «Улу-Юльское сельское поселение» на период до 2028 года |
Машина мешкозашивочная gk 9 паспорт и инструкция по эксплуатации Машина может сшивать мешки из мешковины/джута/, ткани, полипропилена, бумаги. Крепежные элементы выполнены в метрической системе,... |
Поиск |