Геронтологическое общество


Скачать 1.86 Mb.
Название Геронтологическое общество
страница 4/15
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   2   3   4   5   6   7   8   9   ...   15

Эти и ряд других повреждающих воздействий приводит к окислению липидов клеточных мембран, инактивации белков-ферментов, гликозилированию структурных белков и образованию между ними поперечных сшивок, мутациям генов. Это, в свою очередь, ведет к постепенному разрушению структуры и ухудшению функционирования клетки: нарушается целостность и проницаемость мембран, падает ферментативная активность, клетка засоряется продуктами обмена, нарушается синтез белков и регуляция клеточных процессов (программируемая клеточная гибель и другие механизмы ограничения срока жизни клетки по сути являются защитной реакцией организма от накопления таких молекулярных повреждений). Причем, эти процессы характеризуются положительной обратной связью - неправильное или ухудшенное функционирование молекул приводит к увеличению потока повреждающих воздействий (следствием наличия такой обратной связи является зависимость скорости смертности от самой смертности, послужившая основной гипотезой для вывода уравнения Гомперца). К тому же, в связи с ухудшением работы клеток и отмиранием (апоптозом) части из них нарушаются регуляторные процессы и на организменном уровне, что в результате обратной связи приводит к еще большему увеличению повреждающих воздействий на молекулярном уровне. Все это ведет к катастрофическому нарушению регуляции, появлению системных "болезней старения" (большинство форм рака, атеросклероз, гипертония, сахарный диабет), ослаблению сопротивляемости организма стрессорным воздействиям, что с неизбежностью приводит к смерти.

В период возникновения жизни, в "первичном бульоне" основные молекулы жизни (белки и нуклеиновые кислоты) неизбежно должны были подвергаться повреждающим воздействиям. (Поскольку эти молекулы старели еще до того как появилась возможность для их саморазмножения, т. е. до возникновения жизни, то можно сказать, что старение древнее жизни.) Следовательно, возникновение механизмов защиты от них (антистарения) было существенно необходимо для успешного развития жизни. И далее в процессе эволюции происходила конкуренция старения и антистарения [123,171].

В качестве примера механизмов антистарения можно привести осуществляемое супероксиддисмутазой ферментативное превращение супероксидных радикалов в перекись водорода, которая затем расщепляется каталазой на воду и кислород. Другими примерами могут служить группы ферментов, восстанавливающих поврежденные участки молекул нуклеиновых кислот (нуклеазы, полимеразы, лигазы) и расщепляющие окисленные белки (протеиназы и пептидазы) (подробнее старение и антистарение на молекулярном уровне рассмотрено ниже, в части, посвященной описанию современных концепций в геронтологии).

Все эти механизмы не обеспечивают абсолютной защиты от повреждающих воздействий. Во многом это объясняется тем, что эволюция действует методом проб и ошибок, т. е. нужное приспособление не появляется сразу и в законченном, совершенном виде. В принципе, можно представить, что практически нестареющий организм мог бы появиться (возможно, примером приближения к такому состоянию являются некоторые одноклеточные организмы [123]. Но эволюционный "поиск" долгоживущих организмов и закрепление его результатов возможны только в том случае, если такой организм будет иметь эволюционные преимущества, выражающиеся в повышении выживаемости и увеличении численности вида (иначе случайно "найденный" признак "потеряется" в следующих поколениях). Однако, для благополучия вида вполне достаточно, чтобы отдельный организм мог достичь репродуктивного возраста и оставить потомство, а что будет с организмом дальше для вида не имеет значения (или имеет пренебрежительно малое значение). Говоря другими словами, путь повышения репродуктивности и жизнеспособности в молодом возрасте проще и выгоднее для вида (а значит и более вероятен), чем увеличение продолжительности жизни отдельной особи (для этого необходим случайный поиск и, по всей вероятности, скоординированное изменение большого количества функций, вероятность чего очень мала).

Таким образом, из всего вышеизложенного следует, что для эффективной борьбы со старением нужно системно, с учетом всех взаимосвязей на клеточном и организменном уровнях совершенствовать геропротекторные функции организма (прежде всего повышая качество работы "молекул антистарения" и систем, вовлеченных в регуляцию этих процессов), а также видоизменять структуры "молекул старения" таким образом, чтобы при их работе образовывалось как можно меньше опасных побочных продуктов. Часть необходимые для этого операций можно будет проводить средствами генной и белковой инженерии. Однако более универсальным и эффективным средством может оказаться протезирование и хирургия на молекулярном уровне посредством нанотехнологии.

Нанотехнология определяется как технология, основанная на возможности манипулировать отдельными атомами и молекулами с целью создания достаточно сложных объектов, структура которых может быть описана с точностью до одного атома [188]. Этот термин также используется и для обозначения области науки и техники, связанной с разработкой устройств, позволяющих производить подобные манипуляции. Название нанотехнология происходит от слова нанометр - одна миллиардная доля метра (величина равная нескольким межатомным расстояниям).

Впервые мнение о принципиальной возможности построения любых материальных объектов "атом за атомом" и о неизбежности развития технологии в этом направлении высказал известный американский физик, лауреат Нобелевской премии, Р. Фейнман в 1959 г. в своей речи на ежегодном собрании Американского физического общества [200]. Первым шагом на пути реализации таких возможностей стало создание в 1981 г. сотрудниками фирмы IBM Г. Биннигом и Г. Рорером сканирующего электронного микроскопа [157] (за это изобретение им была присуждена Нобелевская премия). Принцип действия этого устройства состоит в следующем. При движении тонкой иглы на очень малом расстоянии над поверхностью, проводящей электричество, из-за эффекта квантового туннелирования электронов возникает ток утечки. Поддерживая этот ток на постоянном уровне путем приближения иглы к поверхности или удаления от нее можно получить профиль поверхности с атомарным разрешением. Если же на иглу подать большее напряжение, чем нужно для измерения профиля, то при определенных условиях атом может оторваться от поверхности и присоединиться к игле, что позволяет перенести его в другое место и опустить обратно на поверхность. В дальнейшем был создан ряд устройств со сходными принципами работы [286]. Для биологических исследований наибольший интерес представляет атомно-силовой микроскоп, принцип действия которого основан на механическом взаимодействии иглы с веществом (т. е. в этом случае не требуется, чтобы исследуемый объект проводил электрический ток).

В настоящее время различным аспектам нанотехнологии посвящены многочисленные исследования. Основные усилия ученых сконцентрированы на уменьшении размеров вычислительных устройств, создании механических устройств субмикронных размеров (электрических двигателей, трансмиссий и т. п.) и синтезе наноструктур химическими методами [318]. Применяются достижения этих направлений нанотехнологии в биологии и медицине - например, для изготовления сверхчувствительных биосенсоров для детекции молекул [155].

Однако, по всей вероятности, наиболее перспективными с точки зрения применения в медицине могут оказаться результаты исследований в области, называемой молекулярной нанотехнологией. Большой вклад в возникновение интереса к данному направлению исследований и в его дальнейшей прогресс внес американский ученый Э. Дрекслер, первая статья которого по этой проблеме была опубликована в 1981 г. [187]. Основной задачей здесь является создание молекулярных роботов - устройств молекулярных размеров, снабженных детекторами, манипуляторами и встроенным компьютером. Планируется, что они будут изготовляться из искусственно синтезируемых углеродных цепочек или на основе биологических макромолекул [190] (далее в основном будет анализироваться последний подход). Принципы их работы будут напоминать механизмы действия белковых молекул. В основном это будут конформационные изменения молекулярной структуры, результатом которых может быть детекция определенной молекулярной поверхности, изменение химических связей в обнаруженных и опознанных молекулах, а также изменение собственного состояния робота (ряд последовательных изменений состояния эквивалентен произведению некоторых вычислительных и логических операций).

Для медицинских применений помимо возможности детекции и манипулирования биомолекулами важной проблемой является энергоснабжение молекулярных роботов и их взаимодействие во время нахождения внутри организма с находящимся вне организма суперкомпьютером, который управляет их работой. Здесь перспективным представляется использование магнитного поля, поскольку биологические ткани прозрачны для него (другим вариантом может быть использование акустических волн). Магнитное поле может изменять структуру молекулярных роботов, заряжая его энергией и сообщая информацию, а для сообщения информации управляющему компьютеру молекулярный робот может сам изменять свою структуру, что будет зарегистрировано датчиками, расположенными вне тела человека. Аналогом такого подхода является томография на основе ядерного магнитного резонанса - метод, который сейчас широко используется для получения трехмерных изображений внутренних органов в реальном времени.

Первоначально основными элементами технологии изготовления молекулярных роботов будут биотехнология и органический синтез. Процесс их изготовления будет напоминать существующие биотехнологические методы, которые на сегодняшний день выглядят примерно так: синтезируется ген, кодирующий структуру белка (в будущем - молекулярного робота); этот ген внедряется в бактерии, которые размно-жаются и синтезируют белок в необходимом количестве; далее (при необходимости) белок модифицируется химическим способом. По мере развития нанотехнологии на смену этому процессу придет другой, основанный на саморазмножении молекулярных роботов [188]. Такая способность будет заложена либо в молекулярный робот сложной конструкции, либо к саморазмножению будет способен коллектив относительно простых роботов, отдельные группы которого будут специализированы на выполнении какой-либо одной функции - аналогом такого коллектива может быть пчелиная или муравьиная семья.

Главной проблемой, препятствующей разработке и внедрению молекулярных роботов является их проектирование. Основной элемент такого проектирования - моделирование поведения роботов. Эта задача примерно того же порядка сложности, что и моделирование динамики белковых молекул. Хотя его алгоритмы известны, но большой размер молекул не позволяет осуществить их моделирование в приемлимые сроки при помощи современных компьютеров. Оценки тенденций развития вычислительной техники [162,261] позволяют предположить, что компьютеры смогут достичь мощности, необходимой для такого моделирования лишь в 2010-2015 гг.

Поскольку другие элементы технологии изготовления белковоподобных молекулярных роботов практически уже существуют, можно прогнозировать, что молекулярная нанотехнология может быть реализована вскоре после этого времени. С учетом необходимости разработки конкретных типов молекулярных роботов и проведения дополнительных молекулярно-биологических исследований (направленных как на получение недостающих данных о функционировании биомолекул и клеток, так и на экспериментальное тестирование взаимодействия молекулярных роботов и клеточных структур) можно ожидать, что описанные ниже возможности будут доступны во второй четверти 21 в. Однако, при благоприятном развитии событий отдельные элементы описанной ниже процедуры лечения старения могут начать внедряться в практику уже в конце следующего десятилетия. Например, это может быть противодействие какой-либо одной причине старения посредством простых, автономно функционирующих молекулярных роботов, конструкция которых не сильно отличается от таковой обычных белков. В отличие от более сложных, универсальных роботов их разработка (по крайней мере, в принципе) может быть проведена без больших вычислительных затрат - сочетанием компьютерной "искусственной эволюции" [234] и биохимической "эволюции в пробирке" [156].

Принимая во внимание прогресс нанотехнологии, а также то, что для противодействия старению необходима системная, массовая коррекция структуры организма на молекулярном уровне, можно предположить как будет выглядеть процесс лечения старения через несколько десятилетий.
Основными составными частями геронтологической клиники будущего будут устройство для синтеза молекулярных роботов, суперкомпьютер, прибор для организации взаимодействия между роботами и суперкомпьютером (типа магнитно-резонансного томографа). Безусловно, для управления ими будет необходим высококвалифицированный персонал. Процесс лечения будет происходить примерно следующим образом. Пациенту вводится инъекция молекулярных роботов, затем он помещается в "томограф", и в суперкомпьютере запускается программа для диагностики и лечения. По окончании лечения молекулярные роботы инактивируются и выводятся из организма. Пока трудно оценить длительность одной процедуры и их количество. Эти параметры будут зависеть от стадии процесса старения, от производительности и качества работы молекулярных роботов, от глубины познания механизмов старения и т. п.

Во время лечения молекулярные роботы будут выполнять следующие операции: узнавание определенных фрагментов молекул и клеток, разрыв или соединение частей молекул, добавление или удаление молекулярных фрагментов, полная разборка и сборка молекул и клеточных структур по определенной программе. В результате этих операций будет осуществлено полное восстановление всех повреждений, произошедших в клетке в процессе старения. Например, будут разобраны молекулярные сшивки в липидных мембранах и белках, произведена их "декарамелизация" (удаление неспецифически присоединившихся к ним молекул глюкозы), удалены накопившиеся вредные продукты обмена, восстановлена правильная последовательность нуклеотидов в ядерной и митохондриальной ДНК, восстановлена структура хроматина, характерная для здорового состояния клетки.

Дополнительно к такой процедуре лечения старения (молекулярной хирургии) можно будет производить молекулярное протезирование - долговременный ввод в клетку автономно функционирующих молекулярных роботов, которые будут предотвращать молекулярные повреждения или лечить их сразу после возникновения (например, инактивировать ускользнувшие от естественных защитных систем свободные радикалы).

Также молекулярные робот могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки - в изменении генов или добавлении новых для усовершенствования функций клетки. Причем в конечном счете может оказаться, что после такого усовершенствования старение замедлится настолько, что в его лечении уже не будет необходимости. Однако, значительная перепроектировка генома может привести к искусственной трансформации Homo sapiens в другой биологический вид, что может вызвать негативную общественную реакцию или оказаться нежелательным по иным причинам. В то время как описанное выше нанотехнологическое лечение старения не ведет к таким последствиям, и с этой стороны оно имеет преимущество перед генно-инженерными методами.

Тут может возникнуть закономерный вопрос: будет ли лечение в геронтологической клинике будущего доступно для любого человека? Для ответа на этот вопрос нужно рассмотреть прогнозы относительно немедицинских аспектов применения нанотехнологии. Предполагается, что нанотехнологические устройства смогут полностью заменить существующие промышленные и сельскохозяйственные технологии, во много раз увеличив их производительность и снизив затраты [188]. Все операции будут сведены к перестройке расположения атомов в исходных материалах, получаемых из воды, воздуха и песка. Причем поскольку молекулярные роботы, производящие эти операции, будут использовать солнечную энергию и изготовлять самих себя, затраты на обеспечение всех людей пищей, одеждой, жильем, средствами передвижения и энергией (топливом) будут ничтожными. Среди всего прочего это будет означать дешевизну медицинского оборудования и легкость организации его массового производства. Это позволяет предположить, что и в целом стоимость медицинского обслуживания будет невелика, и оно будет доступно практически каждому человеку. Следует также отметить, что применение нанотехнологии в космонавтике и планетной инженерии позволит решить проблему перенаселения Земли, которая часто приводится в качестве аргумента против исследований по проблеме продления жизни.

Страница 57

"Мир - лестница, по ступеням которой
Шел человек. Мы осязаем то,
Что он оставил по своей дороге.
Животные и звезды - шлаки плоти,
Перегоревшей в творческом огне;
Все в свой черед служили человеку
Подножием, и каждая ступень
Была восстаньем творческого духа."


Максимилиан Волошин, "Путями Каина".


1. ОБЗОР ИСТОРИИ ГЕРОНТОЛОГИИ

Возникновение биологического "стремления" к увеличению продолжительности жизни явилось следствием физических законов, а также того факта, что жизнь на Земле зародилась в виде феномена саморазмножения макромолекул в водном растворе. Уже на уровне макромолекул действовал отбор на увеличение продолжительности их существования, так как "смерть" (распад) и "старение" (повреждение) молекул были неизбежны. Аналогичным образом происходила селекция приспособлений, обеспечивающих достаточно длительное существование, у одноклеточных, а затем и у многоклеточных организмов. После возникновения нервной системы и психики биохимические и физиологические приспособления, обеспечивающие поддержание (и увеличение при появлении соответствующего давления естественного отбора) необходимой продолжительности жизни, были дополнены поведенческими инстинктами и механизмами нервной регуляции физиологических процессов. Появление у человека сознания привело к пониманию им факта ограниченности собственного существования во времени (т. е. факта смертности). Это вызвало возникновение коллизии между его биологическим, инстинктивным стремлением к длительному существованию и осознанием невозможности его достижения. У большинства людей это приводило к примирению с фактом смертности. Такое примирение выразилось в возникновении различных защитных психологических механизмов (как правило, культурно опосредованных), одним из которых является вера в посмертное существование. Однако во все времена существовали люди, у которых биологическое в своей основе стремление к долгой жизни (в предельном случае - к бессмертию) было настолько велико, что они не могли смириться с неизбежностью смерти, а их критически и рационально ориентированное мышление было способно к преодолению культурных догм. Поэтому они устремляли свои усилия на поиск путей увеличения продолжительности жизни. Первоначально эти поиски велись главным образом в алхимико-мистическом направлении, но постепенно, по мере накопления знаний о живой природе и формирования биологической науки, они трансформировались в научные исследования по продлению жизни.

На этот процесс влияло множество факторов. Сначала важную роль играли наблюдения за теми приспособлениями, которые используются животными для увеличения своей продолжительности жизни. Позднее по мере формирования биологической науки ее достижения стали играть определяющую роль в исследованиях по продлению жизни. Эпохальные открытия, смена исследовательских парадигм в биологии (каковыми были возникновение рациональной философии и экспериментальной науки в эпоху Возрождения, создание теории эволюции и открытие других основных биологических законов в середине 19 в., открытие механизмов функционирования биологических макромолекул в 50-х гг. 20 в.) приводили к качественным изменениям и в геронтологии. Причем одним из существенных элементов таких изменений было появление нового типа моделей, представляющих геронтологическое знание.

Помимо прогресса в области биологических наук, на развитие геронтологии влияли технологические, социальные, экономические и другие процессы. Хотя их действие было разнонаправленным (т. е. они как способствовали развитию геронтологии, так и тормозили его), однако, в конечном счете, действие биологического стремления к увеличению продолжительности жизни, реализующееся через научные исследования по этой проблеме, привело к такому состоянию знания о механизмах старения, которое позволило вплотную приблизиться к разработке методов, дающих человеку возможность практически не стареть или периодически омолаживаться.


"Где начало того конца, которым оканчивается начало?"


Козьма Прутков, "Плоды раздумья".


1.1. ПЕРИОДИЗАЦИЯ ИСТОРИИ ГЕРОНТОЛОГИИ

1.1.1. Познание и моделирование

В качестве одного из ведущих критериев для периодизации истории геронтологии может быть рассмотрен факт появления нового типа моделей, применяемых для представления и получения геронтологического знания. Его значимость можно обосновать следующим.

Во-первых, как справедливо указал Н. М. Амосов, "вся эволюция организмов и история человечества связана с информацией и моделями" [3]. Поэтому в скрытом виде проблемы, связанные с созданием и исследованием моделей, не могут не быть затронуты в любом историческом исследовании, рассматривающем развитие биологических наук за большой временной период. Перевод такого рассмотрения из скрытой форму в явную может способствовать большему пониманию закономерностей исторического развития.

Во-вторых, по сути любое знание представляет собой модель реальности, так как любая научная дисциплина всегда имеет дело только с приближенным (т. е. модельным) описанием [80]. При этом процесс познания может быть рассмотрен как процесс построения моделей [93], где построение математической модели означает достижение наивысшей точки индуктивного обобщения экспериментальных данных и теоретических построений [18]. Более того, психика человека, реализующая процесс познания, также представляет собой моделирующую систему [100]. Таким образом, выбор данного критерия для описания развития научного знания вполне естественен и находится в русле общего подхода к рассмотрению познания как информационного процесса.

В-третьих, считается, что изменение моделей является одним из ведущих факторов исторического прогресса [3]. И, действительно, как будет показано ниже, наиболее существенные изменения в геронтологии, вызванные накоплением эмпирических данных, развитием методологии их анализа (частью которой являются используемые типы моделей) и открытием новых законов, сопровождались появлением нового типа моделей. Наличие такой зависимости позволяет считать выбранный критерий хорошим индикатором революционных перестроек в геронтологии. При этом, однако, следует понимать, что, безусловно, основой ее периодизации являются сами эти перестройки, а изменение типов моделей является лишь одной из их составных частей и служит концентрированным выражением и итогом развития всей системы геронтологического знания. Таким образом данный критерий помимо общего похода к познанию природы и ее истории отражает и частный подход - познание закономерностей исторического развития геронтологии.

В-четвертых, применение методов кибернетики исключительно важно для познания живой природы в целом. Вот что писал об этом А.А. Ляпунов: "Основные задачи биологии естественным образом выступают как характерные кибернетические задачи ... параллелизм проблематики при изучении больших систем и при изучении живой природы при более детальном и более полном исследовании позволит представить всю биологию в значительно более цельном виде, чем это делается в настоящее время" [75]. Еще более радикально высказывание выдающегося отечественного физиолога Н. А. Берштейна: "Биокибернетике суждено стать в дальнейшем не одной из ветвей биологии, а очередной ступенью развития всей биологии в целом" [24]. Из всех методов кибернетики именно моделирование является наиболее адекватным методом для изучения сложных систем, каковыми являются большинство биологических систем [18]. Поэтому, по всей вероятности, как наиболее полное познание феноменов жизни, старения, психики, так и реализация эффективных методов продления жизни будет связано с широким применением технологий компьютерного моделирования. Следовательно, широкое внедрение в геронтологию модельного подхода (в том числе и рассмотрение ее истории с такой точки зрения) представляется весьма актуальным.

Для построения и исследования моделей, представляющих геронтологическое знание, необходимы: 1) соответствующие эмпирические данные (таблицы продолжительности жизни, статистические данные о возрастной динамике причин смерти и т. п.); 2) общие законы биологии, имеющие отношение к геронтологии (т. е. законы, описывающие эволюцию, наследственность, обмен веществ и т. п.); 3) частные законы предметной области - т. е. собственно геронтологические законы (уравнение Гомперца-Мейкема и т. п.); 4) методология моделирования (используемый тип моделей, математические методы, применяемые для их исследования, алгоритмы анализа исходных данных и верификации получаемых результатов и т. п.). Именно эти четыре аспекта, существенные для рассмотрения геронтологии с точки зрения теории моделей, а также методы продления жизни, разработанные в рамках данного набора данных и теорий и при использовании существующей методологии, будут определяющими при рассмотрении исторического развития геронтологии.

Идеальные (т. е. не физические, не натурные) модели разделяют на концептуальные (называемые также дескриптивными, описательными, содержательными, символическими и т. п.) и математические. Главное их отличие состоит в том, что формализм последних позволяет с высокой точностью прогнозировать поведение системы посредством применения математических методов [28,80,118].

Концептуальные модели делятся на качественные и количественные [118]. Необходимо отметить, что во многих случаях даже при качественном описании неизбежно использование численных параметров (например, продолжительность жизни выражается в количестве прожитых лет). Однако в данном типе моделей такие параметры не играют существенной роли, к тому же зачастую они являются результатом приблизительных оценок или устанавливаются в результате единичных измерений (т. е. не являются достоверными). Поэтому эти модели не пригодны для сколько-нибудь значимого количественного анализа. Численные же параметры количественных моделей получаются в результате точных измерений или предварительной обработки большого количества данных, при которой используются статистические методы, являющиеся первым этапом использования математики в биологии [23]. По сравнению с качественными моделями подобные процедуры делают описание биологических систем гораздо более точным (к примеру, по таблицам продолжительности жизни можно с высокой степенью достоверности рассчитать среднюю продолжительность жизни). Однако способ такого описания (концептуальная, слабо формализованная модель) все еще не позволяет применять математические методы для прогнозирования поведения системы.

Математические модели подразделяются на аналитические и имитационные [107,118]. В аналитической модели в качестве описания используются различные функциональные соотношения (алгебраические, интегро-дифференциальные, конечно-разностные и т.п.) или логические условия, допускающие их исследование средствами математического анализа или численными и другими математическими методами. В имитационной модели реализующий ее алгоритм воспроизводит процесс функционирования моделируемой системы во времени через имитацию поведения элементов системы и взаимодействия между ними. По сравнению с аналитическими имитационные модели позволяют решать более сложные задачи, и сейчас они являются наиболее эффективным методом исследования сложных систем. Поскольку термин имитационный вне контекста моделирования имеет скорее негативный оттенок и интуитивно не понятен неспециалисту в области моделирования, ниже вместо него будет использоваться термин кибернетический, так как для построения и исследования имитационных моделей в основном применяются методы кибернетики и в ряде работ имитационные модели действительно называют кибернетическими.

1.1.2. Периодизация истории геронтологии с позиции теории моделей

Обзор представлений о природе, существовавших во времена античности и средневековья [55], показывает, что геронтология, биология в целом, а также и многие другие области науки находились тогда в стадии формирования. Наблюдения за природными явлениями либо существовали как слабо упорядоченные наборы эмпирических закономерностей, либо обобщались в теории, в основе которых лежали религиозные и философские представления, далекие от реальности. Во многом это может быть объяснено, что стимулом развития науки был не поиск истины, а аксиологические, прагматические мотивы [116]. Только в отдельных, очень редких случаях, система представлений как о природе вообще, так и о живой природе в частности, более или менее правдоподобно отражала реальность, примером чего могут служить работы Аристотеля, которого принято считать основателем биологии как науки [55] и автором первой попытки создания концептуальной модели организма как целостной системы [64]. Таким образом, в этот период количество знаний о природе, уровень культурного развития общества, а также его интеллектуальный потенциал (количество образованных людей, пытающихся постичь законы природы) были недостаточными для получения истинного знания о природе, для формулировки правильных законов развития материи (некоторые историки называют этот период протонаукой [см. 116, с. 85-86] - по аналогии с этим можно говорить о существовании протогеронтологии). Поскольку количественные данные о явлениях, имеющих отношение к геронтологии, были весьма незначительны, неточны и могли фиксироваться лишь как результаты единичных измерений из-за отсутствия статистических методов (в частности данные о продолжительности жизни человека и животных фиксировались как отдельные максимальные значения [40], относительно используемых моделей этот период может быть назван периодом качественных моделей.

Большинство историков считает, что настоящая наука возникла лишь в период Возрождения [66]. Тогда сумма знаний, культурный потенциал и потребности технологического развития позволили реализоваться рациональным механизмам познания. Это привело к появлению рациональной, критической философии, экспериментальной парадигмы и средств математического анализа - сущностным чертам современной науки. Однако, как видно из биологических воззрений того времени [55], сложность биологических феноменов, все еще недостаточный уровень биологического знания не позволили открыть специфические общебиологические законы, а значит, в тот период биология (а значит и геронтология) еще не была выделена из естествознания. В основном тогда использовались эмпирические закономерности (т. е. частные законы, не носившие общебиологического характера). Все это безусловно препятствовало прогрессу в понимании живой природы, хотя, по сравнению с предыдущим периодом, объем как биологических данных (в том числе количественных параметров, используемых при описании биологических феноменов), так и найденных эмпирических закономерностей колоссально увеличилось. Причем при описании геронтологических данных стали использоваться точные количественные закономерности. Например, при описании возрастной динамики (для составления таблиц продолжительности жизни и т. п.) начали применяться статистические методы [35], без которых исследование подобное описание не может быть точным из-за значительной разницы в продолжительности жизни отдельных особей. Поэтому относительно используемых моделей данный период может быть назван периодом количественных моделей. Интересно отметить связь между использованием методов статистики для описания природных явлений и статичной картиной мира согласно метафизическим представлениям того времени [55], а также тот факт, что термин "статистика" был введен английским ученым и политическим деятелем Дж. Синклером (1754 - 1835), который своими публикациями внес значительный вклад в развитие геронтологии [204].

Все возрастающий поток биологической информации и многочисленные попытки обобщения биологического знания на рациональной основе в конечном счете привели к тому, что в 19 в. (начиная примерно со второй его четверти) и начале 20 в. были открыты основные специфически биологические законы: клеточное строение организмов, теория эволюции и законы наследственности, что создало предпосылки для окончательного формирования биологии как самостоятельной дисциплины. Применение этих законов привело к огромному прогрессу биологического знания, к существенному приближению к истинному пониманию живой природы. В течение этого периода окончательно сформировались практически все основные биологические дисциплины, важные для геронтологии: физиология обмена веществ, эндокринология, иммунология, физиология высшей нервной деятельности, эволюционная зоология, генетика [55,56]. Тогда же в геронтологии стали использоваться аналитические модели, такие как уравнение Гомперца-Мейкема [см., например, 35] или аналитическая модель старения Н. А. Белова [51]. Все это свидетельствует, что относительно используемых моделей данный период можно считать периодом аналитических моделей.

Однако, ключом к пониманию феномена жизни и старения являются процессы на молекулярном уровне организации живой материи [56]. Поэтому возникновение истинно научной геронтологии не могло произойти ранее формирования молекулярной биологии в 50-х гг. 20 в., обозначившей достижение последнего уровня редукции в познании биологических законов, относящихся к геронтологии. Это создало предпосылки для отказа от спекулятивных, умозрительных теорий, в то время все еще игравших значительную роль в геронтологии. Существенное значение имело также произошедшее в это время осознание важности процессов переработки информации для обеспечения функционирования живых систем (это было связано с работами как по молекулярной биологии, так и по нейробиологии) и создание математических основ кибернетики и информатики (теории систем, управления, автоматов и т. п.). Прогресс в молекулярной биологии и информатике обеспечил основные необходимые условия для перехода от качественной, аналитической и экспериментальной геронтологии к количественной, синтетической и вычислительной. Окончательная реализация этой парадигмы приведет к тому, что основной объем знаний будет получаться из вычислительных, а не из натурных экспериментов (это произойдет когда будут досконально поняты, вплоть до создания точных кибернетических моделей, все законы функционирования живой материи и будет достигнута необходимая вычислительная мощность компьютеров). Поскольку в этот период в геронтологии начали применяться кибернетические модели (для описания регуляции, регенерации, надежности, эпидемиологических процессов, старения на уровне популяции и т. д. [см., например, 21,23,57] этот период может быть назван периодом кибернетических моделей.

1.1.3. Другие варианты периодизации геронтологии

Предложенная выше периодизация в известной мере следует исторической традиции (обобщая ее). Подобное деление на периоды как явно, так и неявно присутствует во многих исторических исследованиях в области геронтологии.

В неявном виде периодизация истории геронтологии присутствует в различных датировках момента возникновения геронтологии. Его относят на разные исторические периоды: к периоду античности, к Возрождению, к концу 19 в. - началу 20 в., к середине 20 в [см. 1,40,42,51,61,204]. Причем датировки различаются не только у разных авторов, но и в пределах работы одного автора. Примером могут служить следующие цитаты из монографии И.В. Давыдовского [42, с. 4, 272]: "Первые работы по геронтологии находим у Гиппократа", "Первый печатный труд, сделавший науку о старости особым предметом, принадлежит итальянскому анатому ... Zerbi (Gerontocomia, 1489)", "Только в XIX и особенно к середине XX века проблема старости выросла в науку - геронтологию". Как будет показано ниже, именно в упомянутые выше периоды происходили наиболее существенные изменения в развитии геронтологического знания. Этот факт означает, что противоречивость в датировке начала геронтологии лишь внешняя, а различие во взглядах на самом деле отражает как наличие периодов в истории геронтологии, так и разные точки зрения на значимость отдельных периодов.

В явном виде периодизация развития геронтологического знания (в основном применительно к социальной и психологической геронтологии) была предложена М. Д. Александровой [1], которая выделила следующие периоды: 1) донаучный, 2) конца 19 - начала 20 в., 3) с 30-хх гг. и до начала Второй мировой войны, 4) послевоенный период. Однако, поскольку геронтология является преимущественно биологической наукой, то подход, предложенный в настоящей работе и основанный на сопоставлении развития биологии и геронтологии, представляется более адекватным. С этой точки зрения геронтология в качественный и количественный периоды (в донаучный у Александровой) существенно различалась как методологически, так и интенсивностью исследований. В то время как развитие геронтологии в аналитический период (во второй и третий периоды у Александровой) происходило скорее постепенно, в 30-е гг. не происходило особенно значимых событий, позволяющих разделить этот период.


"Где призраки, свой человек философ.
Он покоряет глубиной вопросов,
Он все громит, но после всех разносов
Заводит новых предрассудков тьму."


И.В.Гете, "Фауст".


1.2. ПЕРИОД КАЧЕСТВЕННЫХ МОДЕЛЕЙ

1.2.1. Продление жизни в древнейших культурах

По всей вероятности, в древнейшие времена желание понять феномен старения было неотделимо от желания замедлить или устранить его. Существование возможности увеличения продолжительности жизни путем борьбы со старением первоначально могло основываться на фактах разной индивидуальной продолжительности жизни людей и разной средней продолжительности жизни у разных видов животных, длительного существования некоторых видов деревьев и неживых объектов, а также на возможности лечения заболеваний. Как возникновение понимания того, что могут быть найдены способы продлить жизнь, нашедшее свое отражение в мифах, так и начало применения средств, действительно продлявших жизнь (в первобытных обществах и в ранних цивилизациях уже существовало врачевание, что конечно же продляло жизнь), теряются во времени. Одним из наиболее древних письменных свидетельств считается фрагмент из эпоса о шумерском царе Гильгамеше (включенный в эпос, вероятно, в первой половине второго тысячелетия до н. э.), в котором рассказывается, что Гильгамеш в поисках бессмертия нашел растение, омолаживающее тело, но не сумел им воспользоваться [33,134]. Что касается практических рецептов, то описания старческих изменений и рекомендации по продлению жизни можно найти уже в произведениях древнеегипетских и древнеиндийских авторов [40,204]. Однако, первые целенаправленные, систематические попытки достичь цели продления жизни, к тому же основанные на использовании в какой-то степени адекватных методов, достоверно зарегистрированы в древнем Китае у даосов [214].

1.2.2. Даосизм

Даосизм представляет собой религиозно-философскую систему, одна из главных целей которой - продление жизни ее адептов [112,214]. Это учение начало формироваться в 4 - 3 вв. до н. э. в Китае на основе синтеза наблюдений на природными явлениями и их разнообразных интерпретаций, существовавших в традиционной китайской культуре того периода. Согласно даосизму видимый мир есть проявление единой сущности (или силы) - дао (наиболее близкий аналог в западной философии - пантеизм, т. е. отождествление Бога и природы). Такое видение мира подразумевало единство всего сущего, отсутствие четкого разделения на дух и материю, на Бога и человека. Следствием этого было понимание, что человек может посредством собственных усилий трансформироваться в совершенное, богоподобное, бессмертное существо, и, что для осуществления такой трансформации необходимы комплексные меры, в том числе включающие и материальные воздействия на тело человека.

Основными из этих мер были следующие: этические - спокойная, размеренная жизнь (для экономии жизненной энергии); религиозные - в основном, медитация (для оказания влияния на дао); дыхательная техника - задержка дыхания и т. п. (поскольку считалось, что через дыхание осуществляется связь между человеком и божеством, то контроль процесса дыхания означал контроль над духом); диета - ее основу составляли малокалорийные продукты растительного происхождения (поскольку считалось, что такая пища содержит больше воздуха); специальные гимнастические упражнения - гимнастика даосов у нас известна под названием кунг фу (имела вспомогательное значение для достижения совершенства в дыхательной и сексуальной технике); сексуальная техника - у нас известна как дао любви (применялась для увеличения своей жизненной силы за счет получения ее от партнера, из чего следовало, что партнеров должно быть много и они не должны быть даосами). Эти вышеперечисленные методы, называвшиеся внутренней трансформацией дополнялись внешней трансформацией, включавшей в себя применение специальных веществ, продляющих жизнь, а также поиск эликсира - субстанции, способной превращать одни вещества и существа в другие, например, ртуть в золото (что рассматривалось как "лечение" металлов), смертного человека в бессмертного.

Основные положения даосизма основаны на понимании единства природы, что следовало из наблюдений. Другим источником была возможность химических превращений веществ, открытая в результате практической деятельности. Возникновение акцента на возможность достижения бессмертия частично может быть объяснено необходимостью привлечения новых адептов в условиях конкуренции с другими религиозными течениями [30,116]. Помимо вышеперечисленных влияний некоторыми исследователями [30] допускается возможность заимствования некоторых положений даосизма из индийских религиозных систем, на которые в свою очередь могла повлиять древнеегипетская религия.

Можно допустить, что применение методов даосизма действительно может способствовать увеличению продолжительности жизни, например, современные исследования [335] показывают, что низкокалорийная диета может способствовать существенному продлению жизни. Однако нет достоверных данных о влиянии диеты и других мер даосов на их продолжительность жизни [214]. Поэтому нельзя утверждать, что следование канонам даосизма может существенно продлить жизнь.


"Старости надо сопротивляться... Как борются с болезнью,
так надо бороться и со старостью: следить за своим здоровьем,
есть и пить столько, сколько нужно для восстановления сил,
а не для их угнетения".


Марк Туллий Цицерон (106-43 гг до н.э.), "О старости".


1.2.3. Герокомия

Примерно в то же время, что и даосизм в Китае, в Древней Греции зародилась герокомия (или герокомика) - направление, связанное с возможностью достижения здоровой старости с помощью умеренности во всем [40]. Как правило, в рамках этого подхода подразумевается, что смерть неизбежна (так называемая апология смерти) и продлить жизнь дальше некого предела нельзя - можно только помочь каждому прожить его естественную продолжительность жизни без тяжелых болезней.
В отличие от даосизма, который возник в относительно монокультурной среде, постепенно формируясь на основе первобытной мифологии, где вера в сверхъестественное, включая представления о загробной и вечной жизни, была основой мировоззрения, греческая философия и медицина возникли под влиянием очень многих, сильно различающихся друг от друга философских и религиозных концепций (т. е. целостность первобытного мифологически-религиозное мировоззрения древних греков была разрушено), что не могло не вызывать недоверия к умозрительным теориям, и разнообразие, эклектичность и противоречивость древнегреческой философии служит тому подтверждением. Примером такой противоречивости может служить и отношение древних греков к проблеме продления жизни. С одной стороны, мировоззрение древних греков было преимущественно фаталистическим - в мире все предопределено, и человек не может влиять на природные процессы, не может изменить свою изначально смертную природу. Это отражено как в их мифах, где даже боги были не властны над судьбой [см., например, 68], так и во многих философских системах, описывающих мир как полностью детерминированную сущность [129]. С другой стороны, есть отдельные свидетельства, что мысль о существовании средств, дающих бессмертие, была не чужда древним грекам. Например, в некоторых мифах таким средством считался огонь, который делал человеческое тело бессмертным, выжигая его смертные части [19]. Возможно, на возникновение таких представлений повлияли идеи зороастрийцев, в религии которых доминировал культ огня и бессмертия [26].

Вероятно, противоречивость мировоззренческих позиций была одной из причин того, что отношение древних греков к действительности в значительной степени базировалось не на умозрительных концепциях, а на анализе практического опыта и наблюдений [214], которые свидетельствовали, что смерть неизбежна. Вместе с тем, практический опыт лечения болезней и примеры долгожителей показывали, что достижение здоровой старости является осуществимой задачей. Следствием практической основы герокомии было не только то, что его рекомендации были весьма полезны, но также и то, что некоторые теоретические построения античных ученых, объясняющие старение (конечно, в современной интерпретации) были недалеки от истины. К примеру, начиная с Гераклита (конец 6 - начало 5 вв. до н. э.) и Парменида (ок. 540 - ок. 470 гг. до н. э.), старение обычно объяснялось как потеря внутреннего тепла и влаги [40]. Тепло тогда было синонимом энергии, а, согласно современным теориям, в основе старения действительно может лежать ухудшение способности клетки к выработке энергии вследствие накопления молекулярных повреждений [315].

В античный период герокомия не была системой взглядов и не представляла выделенного направления. Наблюдения над процессом старения, описания возрастных заболеваний и советы по продлению жизни были разбросаны по многочисленным трактатам античных авторов: Гиппократа, Аристотеля, Цельса, Галена, Орибазия, Асклепиада и других [40]. Для сохранения тепла и влаги рекомендовалась диета, умеренные физические упражнения, массаж, водные процедуры. Важное место в герокомии отводилось и заботе о пожилых людях (т. е. герогигиене). Большинство из этих методов безусловно полезны для достижения здоровой старости. Другое дело, что они в принципе не могут радикально продлить жизнь.

Традиции герокомии получили значительное развитие в византийской и арабской медицине, откуда они были заимствованы врачами средневековой Европы. Однако методы, предлагавшиеся средневековыми сторонниками герокомии, практически совпадали с рекомендациями античных авторов [40].

1.2.4. Алхимия

В отличие от сторонников герокомии алхимики предполагали, что победа над смертью возможна [214]. Они считали смертность следствием несовершенства человеческой природы и, следовательно, ликвидация этого несовершенства могла бы привести к достижению практического бессмертия. Устранить несовершенство предполагалось путем некой трансформации человека в бессмертное существо. Под этим либо понималась гармонизация соотношения составляющих его элементов, либо поиск и "выращивание" (путем химических превращений) некой бессмертной составляющей человека. В любом случае средством для этого должна была служить особая субстанция - эликсир, или философский камень, или пятый элемент (считалось, что тело человека и других земных существ состоит из четырех типов элементов, а пятый элемент является божественным). Поиск этой субстанции и являлся основной целью алхимиков.

Считается, что алхимия начала формироваться в Египте в эллинистический период, когда химические знания египтян были переосмыслены в рамках философских (как протонаучных, так и религиозно-мистических) представлений древних греков [102,116,119,214]. Безусловно на этот процесс повлияли и религиозно-мистические концепции других соседних народов (в основном, евреев и персов) [см. 128]. Начальный этап развития алихимии был отражен в трактатах таких авторов как Зосима (4 в.), Синезий (5 в.), Олимпиодор (6 в.), Стефан Александрийский (6 в.) [102]. В раннем средневековье арабскими учеными было продолжено развитие алхимических представлений эллинистических авторов, а также, вероятно, и китайских [214]. Арабо-эллинисти-чес-кий генезиз отражен и в самом названии "алхимия": "ал" - арабский определенный артикль, "Кем" - древнее название Египта, обозначающее также черную плодородную землю долины Нила (возможно, что от этого и произошло название страны) и черное вещество, появление которого на первой стадии алхимических превращений описано во многих трактатах [128]. Хотя существуют и другие версии происхождения этого термина: от имени библейского Хама, от греческих слов "хюмос" - сок или "химевсис" - смешивание, от китайского названия золота - "ким", от латинского "хумус" - земля [102, с. 13]. В этот ряд, вероятно, можно поставить и персидское слово "хаома" - название растения (или сока, напитка), дающего бессмертие [26].

Экспериментальный аспект продления жизни в эллинистической и арабской алхимии имел периферический характер [214]. Вероятно это было связано с тем, что в первой их них господствовали мистические представления, а во второй продление жизни могло истолковываться как противоречие воле Аллаха, который создал людей смертными. Способствовало же развитию арабской алхимии то, что тогда она была тесно связана с медициной (т. е. с практическими потребностями людей). Другим важным стимулом для ее развития была ее идея о том, что человек может приобрести власть над природой средствами науки в тогдашнем ее понимании (последнее получило свое дальнейшее развитие в западноевропейской алхимии). Наиболее известными алхимиками исламского мира, касавшихся проблемы продления жизни были араб Гебер (8 - 9 вв.), персы Аль-Риз (Ар-Рази) (850 - 923) и Авиценна (Ибн-Сина) (980 -1037).

Через арабов алхимия была заимствована учеными средневековой Европы, где она получила свое дальнейшее развитие - фактически алхимия являлась наукой того времени [102], и эксперименты по поиску эликсира жизни были поставлены на широкую основу [214]. Этим европейская алхимия больше напоминала китайскую, чем арабскую или эллинистическую. Во многом это произошло благодаря трудам английского философа и естествоиспытателя Р. Бэкона (1214 - 1294). Он считал, что короткая жизнь не норма, а отклонение от нее. Основной причиной укорачивания жизни, по его мнению, был неправедный и неправильный образ жизни людей, причем эта неправедность наследуется и накапливается и, следовательно, каждое поколение живет все меньше. Особенно по сравнению с эталоном праведности - ветхозаветными патриархами, жившими, согласно Библии, около тысячи лет. Главным путем для увеличения продолжительности жизни он полагал поиск веществ, ее продляющих, при помощи алхимических методов. В частности он рекомендовал золото, ладан, жемчуг, змеиное мясо, дыхание девушек.

Одним из последних знаменитых алхимиков, большое внимание уделявший аспектам омоложения и продления жизни, был швейцарский врач и естествоиспытатель Парацельс (1493 - 1541). По мнению М. Грмека [40] и более раннему указанию французского физиолога А. Дастра [43] его относительно недолгая жизнь доказала бесполезность его снадобий. Однако, такое суждение может оказаться поверхностным, поскольку существуют версии о насильственной смерти Парацельса. По одной из них его устранили конкуренты, так как его методы лечения были очень популярны [39,128].

Стоит заметить, что если рассматривать общую постановку проблемы, то исходные посылки алхимиков были в сущности правильными. Однако, вследствие зачаточного уровня развития науки в то время предлагаемые ими методы вряд ли могли привести их к успеху. Хотя, в принципе, методом проб и ошибок, они могли бы найти вещество или снадобье, применение которого продлевало бы жизнь. Так, добавление в пищу селена может продлить жизнь в районах, где его содержание в природных источниках недостаточно [35]. Тем не менее эксперименты алхимиков оказали влияние не только на развитие методов продление жизни, но и на формирование экспериментальной биологии и химии [55,102], поскольку "подлинное эмоциональное желание найти бессмертную сущность человека всегда стимулировало стремление постигнуть тайну материи" [119].


"Если бы все прошедшее было настоящим,
а настоящее продолжало существовать наряду
с будущим, кто был бы в силах разобрать,
где причины и где следствия ?"


Козьма Прутков, "Плоды раздумий".


Страница 56
1   2   3   4   5   6   7   8   9   ...   15

Похожие:

Геронтологическое общество icon Годовой отчет
«Московский электромашиностроительный завод «Памяти революции 1905 года», Закрытое акционерное общество «Кросна-Инвест», Закрытое...
Геронтологическое общество icon Закрытое акционерное общество «Прогноз» Общество с ограниченной ответственностью...
...
Геронтологическое общество icon Статья общие положения общество с ограниченной ответственностью «Жилфонд»
Общество с ограниченной ответственностью «Жилфонд» (далее по тексту – «Общество») является юридическим лицом – хозяйственным обществом,...
Геронтологическое общество icon Документация об открытом запросе предложений
Заказчик – Открытое акционерное общество «Магаданэлектросеть» (далее – Общество)
Геронтологическое общество icon Документация о запросе ценовых котировок
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Общество с ограниченной ответственностью
Настоящая должностная инструкция определяет функциональные обязанности, права и ответственность электрогазосварщика ООО «смс» (далее...
Геронтологическое общество icon Документация о закупке у единственного источника консультационных услуг по технической поддержке
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе ценовых котировок на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе предложений на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)
Геронтологическое общество icon Документация об открытом запросе предложений на право заключения...
Заказчик – Открытое акционерное общество «Объединенная энергетическая компания» (далее – Общество)

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск