1.5. Методы и модели теории систем и системного анализа
Для того, чтобы облегчить выбор методов в реальных условиях, необходимо разделить их на группы (классы) и разработать рекомендации по их использованию при отображении систем различных классов. Поэтому в данном параграфе дается представление о проблеме принятия решений, о роли теории систем и системного анализа в выборе методов моделирования; обосновывается предлагаемая классификация методов; кратко характеризуются методы формализованного представления систем; методы, направленные на активизацию интуиции и опыта специалистов; приводятся примеры новых специальных методов.
1.5.1. Классификации методов моделирования систем
Проблема принятия решений. Поскольку необходимость в методах моделирования возникает при решении каких-либо конкретных задач, то для выбора классификации методов вначале рассмотрим проблему принятия решения. [7]
В любой сфере деятельности человек принимает решения. Однако в тех случаях, когда решение задачи базируется на законах физики, химии и других фундаментальных областей знаний, или когда задача может быть поставлена в терминах конкретного класса прикладных задач, для которого разработан соответствующий математический аппарат, применять термин "проблема принятия решения" нет необходимости.
Потребность в этом термине возникает в тех случаях, когда задача настолько усложняется, что для ее постановки и решения не может быть сразу определен подходящий аппарат формализации, когда процесс постановки задачи требует участия специалистов различных областей знаний. Это приводит к тому, что постановка задачи становится проблемой, для решения которой нужно разрабатывать специальные подходы, приемы, методы. В таких случаях возникает необходимость определить область проблемы принятия решения (проблемную ситуацию); выявить факторы, влияющие на ее решение; подобрать приемы и методы, которые позволяют сформулировать или поставить задачу таким образом, чтобы решение было принято.
Поясним процесс принятия решения на упрощенном примере - задаче по перемещению из одного пункта в другой. Такого рода задачи возникают при доставке грузов на предприятие, выпускаемой продукции - потребителю, и, наконец, - повседневно перед каждым человеком при поездке из дома на работу.
В терминах проблемы принятия решения эту задачу можно представить следующим образом: задана цель - достичь пункта А (или переместить груз из В в А: имеются возможные средства - путь (дорога), и транспорт (различные транспортные средства передвижения или средства доставки грузов); требуется обеспечить реализацию цели.
Если нет никаких других оговорок, требований, то задачи нет, поскольку безразлично, какой маршрут и какие транспортные средства выбирать. Для того, чтобы возникла необходимость принимать решение (возникла задача), нужно ввести критерий (или несколько критериев), отражающий требования к достижению цели. Аналогично нет задачи и в тех случаях, когда ЛПР не может задать требования, сформулировать критерий достижения цели, или неизвестен набор средств достижения цели, т. е. имеет место задача с неопределенностью. В качестве критерия в рассматриваемой задаче можно, например, принять требование осуществить перемещение "за время t*" или "к такому-то времени t*".
Для решения задачи нужно определить взаимосвязи цели со средствами ее до-стяжения, что в данной задаче легко сделать путем оценки средств (дорога оценивается длиной пути L, транспорт - скоростью v транспортного средства; в простейшем случае - средней скоростью) и установления связей этих оценок с критерием. В данном случае в качестве выражения, связывающего цель со средствами, можно использовать закон движения, который в случае равномерного прямолинейного движения имеет вид t = L/v, а в общем виде t = f(L, v).
Таким образом, для принятия решения, нужно получить выражение, связывающее цель со средствами ее достижения с помощью вводимых критериев оценки достижимости цели и оценки средств (рис. 4).
В А
Цель: Достичь п. А
Критерий: «За время t*»
Средства: Дорога - L
Транспорт - v
Выражение, связывающее цель со средствами:
t = L/ v
t = f(L, v)
Рис. 4 Если такое выражение получено, то - задача решена: варьируя либо v при L = const, либо L при v = const, либо v и L одновременно, можно получить варианты решения и выбрать из них наиболее приемлемый.
При постановке рассматриваемой задачи могут быть учтены не только обязательные, основные, требования, отражаемые с помощью критерия, но и дополнительные требования, которые могут выступать в качестве ограничений (в данной задаче -это могут быть затраты на создание или приобретение средств транспортировки грузов, наличие денежных средств у человека, выбирающего вид транспорта и т. п.).
Тогда для решения задачи формируется комплекс соотношений, включающий наряду с основным выражением, связывающим цель со средствами, соотношения-неравенства, отражающие ограничения. Такая постановка задачи была предложена Л.В.Канторовичем [2] и является основой теории оптимизации и нового направления в математике - математического программирования, широко используемого в экономике для задач планирования. В такой постановке выражение, связывающее цель со средствами, устремляют к максимуму или минимуму; выражения, отражающие ограничения, представляют собой, как правило, неравенства (хотя, в принципе, могут быть и равенствами). Разработан широкий спектр методов решения задач математического программирования. По этому направлению обычно читаются в вузе самостоятельные курсы лекций, но кратко его важные принципиальные особенности будут охарактеризованы ниже.
Таким образом, для принятия решения необходимо получить выражение, связывающее цель со средствами ее достижения. Такие выражения получили в параллельно возникавших прикладных направлениях различные названия: критерий функционирования, критерий или показатель эффективности, целевая или критериальная функция, функция цели и т. п.
Гипотеза
Имитационная модель
Теория. Концепция
Закономерность
Закон
Проблемная ситуация
Рис. 5 Многоуровневое
представление Если удается получить выражение, связывающее цель со средствами, то задача практически всегда решается. Эти выражения могут представлять собой не только простые соотношения, подобные рассмотренному, но и более сложные, составные критерии (показатели), аддитивного или мультипликативного вида. Конечно, в этом случае могут возникнуть вычислительные сложности, при преодолении которых может потребоваться вновь обратиться к постановке задачи. Однако полученное формализованное представление задачи позволяет в дальнейшем применять и формализованные методы анализа проблемной ситуации.
Получить такие выражения легко, если известен закон, позволяющий связать цель со средствами (в рассмотренном примере - закон движения). Если закон неизвестен, то стараются определить закономерности на основе статистических исследований, или исходя из наиболее часто встречающихся на практике экономических или функциональных зависимостей. Если и это не удается сделать, то выбирают или разрабатывают теорию, в которой содержится ряд утверждений и правил, позволяющих сформулировать концепцию и конструировать на ее основе процесс принятия решения. Если и теория не существует, то выдвигается гипотеза, и на ее основе создаются имитационные модели, с помощью которых исследуются возможные варианты решения.
В общем виде для ситуаций различной сложности модель формирования критериальной функции для отображения проблемной ситуации можно представить, воспользовавшись многоуровневым представлением типа "слоев" М. Месаровича (рис. 5).
В наиболее общем случае могут учитываться и варьироваться не только компоненты (средства достижения цели) и критерии (отражающие требования и ограничения), но и сами цели, если первоначальная их формулировка не привела к желаемому результату, т. е. цели неточно отразили потребности ЛПР. [2]
В то же время, при постановке задачи в числе критериев могут быть и принципиально неформализуемые. Например, даже в рассмотренной, казалось бы, простейшей задаче наряду с критерием времени и ограничением по затратам можно учесть и такие, принципиально неформализуемые критерии, как безопасность транспортировки грузов для рабочих, удобство приведения в действие транспортно-распределительных устройств или их остановки; такие критерии, как "комфорт".
Например, с учетом этого критерия можно даже при коротких расстояниях и небольшом выигрыше во времени выбрать такси вместо общественного транспорта. если конечно, позволяют денежные средства; или при передвижении между населенными пунктами иногда лучше выбрать более длинную, но асфальтированную дорогу. чем более короткую, но ухабистую.
Или можно выбирать транспортное средство с учетом вида груза. Например, в случае скоропортящейся продукции, лучше выбрать более дорогостоящий рефрижератор, чем обычный грузовой автомобиль и т. д.
В этих случаях полностью формализованная постановка задачи оказывается нереализуемой. Возможны и другие реальные ситуации, затрудняющие формализацию критериев или формирование выражения, связывающего цель со средствами.
При решении задач организации современного производства требуется учитывать все большее число факторов различной природы, являющихся предметом исследования различных областей знаний. В этих условиях один человек не может принять решение о выборе факторов, влияющих на достижение цели, не может определить существенные взаимосвязи между целями и средствами; в формировании и анализе модели принятия решения должны участвовать коллективы разработчиков, состоящие из специалистов различных областей знаний, между которыми нужно организовать взаимодействие и взаимопонимание; а проблема принятия решений становится проблемой коллективного выбора целей, критериев, средств и вариантов достижения цели, т. е. проблемой коллективного принятия решения.
Число и сложность подобных проблем, для которых невозможно сразу получить критерий эффективности в аналитической форме, по мере развития цивилизации возрастает; возрастает также и цена неверно принятого решения. Для проблем принятия решения характерно, как правило, сочетание качественных и количественных методов. Принятие решений в системах управления промышленностью часто связано с дефицитом времени: лучше принять не самое хорошее решение, но в требуемый срок, так как в противном случае лучшее решение может уже и не понадобиться. Поэтому решение часто приходится принимать в условиях неполной информации (ее неопределенности или даже дефицита), и нужно обеспечить возможность как можно в более сжатые сроки определить наиболее значимые для принятия решений сведения и наиболее объективные предпочтения, лежащие в основе принятия решения.
Для того, чтобы помочь в более сжатые сроки поставить задачу, проанализировать цели, определить возможные средства, отобрать требуемую информацию (характеризующую условия принятия решения и влияющую на выбор критериев и ограничений), а в идеале , получить выражение, связывающее цель со средствами, применяют системные представления, приемы и методы системного анализа. [5]
С помощью системного анализа имеется реальная возможность обеспечить взаимодействие и взаимопонимание между специалистами различных областей знаний, участвующими в постановке и решении задачи, помочь исследователям организовать процесс коллективного принятия решения. Для реализации этого процесса нужно выбрать методы системного анализа. А для обеспечения возможности сравнения методов и разработки рекомендаций по их выбору в конкретных условиях, нужно принять или сформировать классификацию методов.
Классификации методов моделирования систем. Постановка любой задачи заключается в том, чтобы перевести ее словесное, вербальное описание в формальное.
В случае относительно простых задач такой переход осуществляется в сознании человека, который не всегда даже может объяснить, как он это сделал. Если полученная формальная модель (математическая зависимость между величинами в виде формулы, уравнения, системы уравнений) опирается на фундаментальный закон или подтверждается экспериментом, то этим доказывается ее адекватность отображаемой ситуации, и модель рекомендуется для решения задач соответствующего класса.
По мере усложнения задач получение модели и доказательство ее адекватности усложняется. Вначале эксперимент становится дорогим и опасным (например, при создании сложных технических комплексов, при реализации космических программ и т. д.), а применительно к экономическим объектам эксперимент становится практическим нереализуемым, задача переходит в класс проблем принятия решений, и постановка задачи, формирование модели, т. е. перевод вербального описания в формальное, становится важной составной частью процесса принятия решения. Причем эту составную часть не всегда можно выделить как отдельный этап, завершив который, можно обращаться с полученной формальной моделью так же, как с обычным математическим описанием, строгим и абсолютно справедливым. Большинство реальных ситуаций проектирования сложных технических комплексов и управления экономикой необходимо отображать классом самоорганизующихся систем, модели которых должны постоянно корректироваться и развиваться.
При этом возможно изменение не только модели, но и метода моделирования, что часто является средством развития представления ЛПР о моделируемой ситуации.
Иными словами, перевод вербального описания в формальное, осмысление, интерпретация модели и получаемых результатов становятся неотъемлемой частью практически каждого этапа моделирования сложной развивающейся системы. Часто для того, чтобы точнее охарактеризовать такой подход к моделированию процессов принятия решений, говорят о создании как бы "механизма" моделирования, "механизма" принятия решений (например, "хозяйственный механизм", "механизм проектирования и развития предприятия" и т.п.)
Возникающие вопросы - как формировать такие развивающиеся модели или "механизмы"? как доказывать адекватность моделей? - и являются основным предметом системного анализа. [6]
Для решения проблемы перевода вербального описания в формальное в различных областях деятельности стали развиваться специальные приемы и методы. Так, возникли методы типа "мозговой атаки", "сценариев", экспертных оценок, "дерева целей" и т. п.
В свою очередь, развитие математики шло по пути расширения средств постановки и решения трудноформализуемых задач. Наряду с детерминированными, аналитическими методами классической математики возникла теория вероятностей и математическая статистика (как средство доказательства адекватности модели на основе представительной выборки и понятия вероятности правомерности использования модели и результатов моделирования). Для задач с большей степенью неопределенности инженеры стали привлекать теорию множеств, математическую логику, математическую лингвистику, теорию графов, что во многом стимулировало развитие этих направлений. Иными словами, математика стала постепенно накапливать средства работы с неопределенностью, со смыслом, который классическая математика исключала из объектов своего рассмотрения.
Таким образом, между неформальным, образным мышлением человека и формальными моделями классической математики сложился как бы "спектр" методов, которые помогают получать и уточнять (формализовать) вербальное описание проблемной ситуации, с одной стороны, и интерпретировать формальные модели, связывать их с реальной действительностью, с другой. Этот спектр условно представлен на рис. 6-а.
Развитие методов моделирования, разумеется, шло не так последовательно, как показано на рис. 6а. Методы возникали и развивались параллельно. Существуют различные модификаций сходных методов. Их по-разному объединяли в группы, т. е. исследователи предлагали разные классификации (в основном - для формальных методов, что более подробно будет рассмотрено в следующем параграфе). Постоянно возникают новые методы моделирования как бы на "пересечении" уже сложившихся групп. Однако основную идею - существование "спектра" методов между вербальным и формальным представлением проблемной ситуации - этот рисунок иллюстрирует.
Вербальное описание Формальная
проблемной ситуации модель
а) . . . . .
Мозговая Сценарии Эксперт- «Дерево Математи- Теория Стисти- Аналити-
атака ные целей» ческая множеств ческие ческие
оценки логика методы методы
Методы моделирования сложных систем
б)
Методы, направленные на акти- Методы формализован-
визацию использования интуи- ного представления
ции и опыта специалистов (ЛПР) систем
Коммплексированные
Методы (методики) методы
Методы типа «мозговой постепенной форма-
атаки» или «коллективной лизации задачи
генерации идей» Аналитические
Методы типа «сценариев» Статистические Комбинаторика
Методы экспертных оценок Теоретико-мно- Ситуационное
Методы типа «Дельфи» жественные моделирование
Методы структуризации Логические Топология
(типа «дерева целей», «прог- Лингвистические Графо-семиоти-
нозного графа» и др.) Семиотические ческое модели-
Морфологичческий подход Графические рование
Метод решающих матриц Имитационное
Структурно- динамическое
лингвистическое моделирование
моделирование
Рис. 6. Методы описания проблемной ситуации
Первоначально исследователи, развивающие теорию систем, предлагали классификации систем и старались поставить им в соответствие определенные методы моделирования, позволяющие наилучшим образом отразить особенности того или иного класса. Такой подход к выбору методов моделирования подобен подходу прикладной математики. Однако в отличие от последней, в основу которой положены классы прикладных задач, системный анализ может один и тот же объект или одну и туже проблемную ситуацию (в зависимости от степени неопределенности и по мере познания) отображать разными классами систем и соответственно различными моделями, организуя таким образом как бы процесс постепенной формализации задачи, т. е. "выращивание" ее формальной модели. Подход помогает понять, что неверно выбранный метод моделирования может привести к неверным результатам, к невозможности доказательства адекватности модели, к увеличению числа итераций и затягиванию решения проблемы[35]. Если последовательно менять методы приведенного на рис. 6-а "спектра" (не обязательно используя все), то можно постепенно, ограничивая полноту описания проблемной ситуации (что неизбежно при формализации), но сохраняя наиболее существенные с точки зрения цели (структуры целей) компоненты и связи между ними, перейти к формальной модели.
Такая идея реализовалась, например, при создании программного обеспечения ЭВМ и автоматизированных информационных систем путем последовательного перевода описания задачи с естественного языка на язык высокого уровня (язык управления заданиями, информационно-поисковый язык, язык моделирования, автоматизации проектирования), а с него - на один из языков программирования, подходящий для данной задачи (ПЛ/1, ПАСКАЛЬ, ЛИСП, СИ, ПРОЛОГ и т. п.), который. в свою очередь, транслируется в коды машинных команд, приводящих в действие аппаратную часть ЭВМ.
В то же время анализ процессов изобретательской деятельности, опыта формирования сложных моделей принятия решений показал, что практика не подчиняется такой логике, т. е. человек поступает иначе: он попеременно выбирает методы из левой и правой частей "спектра"3, приведенного на рис. 6-а.
Поэтому удобно как бы "переломить" этот "спектр" методов примерно в середине, где графические методы смыкаются с методами структуризации, т. е. разделить методы моделирования систем на два больших класса: методы формализованного представления систем (МФПС) и методы, направленные на активизацию использования интуиции и опыта специалистов (МАИС). Возможные классификации этих двух групп методов приведены на рис. 6-б.
Такое разделение методов находится в соответствии с основной идеей системного анализа, которая состоит в сочетании в моделях и методиках формальных и неформальных представлений, что помогает в разработке методик, выборе методов постепенной формализации отображения и анализа проблемной ситуации. Возможные варианты последовательного использования методов из групп МАИС и МФПС в примерах методик, приводимых в последующих главах учебника (соответствующие ссылки будут даны), показаны на рисунке сплошной и штриховой линиями.
Отметим, что на рис.6-б в группе МАИС методы расположены сверху вниз примерно в порядке возрастания возможностей формализации, а в группе МФПС - сверху вниз возрастает внимание к содержательному анализу проблемы и появляется все больше средств для такого анализа. Такое упорядочение помогает сравнивать методы и выбирать их при формировании развивающихся моделей принятия решений, при разработке методик системного анализа.
Классификации МАИС и особенно МФПС могут быть разными. Необходимо отметить, что предлагаемые названия групп методов более предпочтительны, чем используемые иногда термины - качественные и количественные методы, поскольку, с одной стороны, методы, отнесенные к группе МАИС, могут использовать и формализованные представления (при разработке сценариев могут применяться статистические данные, проводиться некоторые расчеты; с формализацией связаны получение и обработка экспертных оценок, методы морфологического моделирования); а, с другой стороны, в силу теоремы Гёделя о неполноте, в рамках любой формальной системы, сколь бы полной и непротиворечивой она не казалась, имеются положения (соотношения, высказывания), истинность или ложность которых нельзя доказать формальными средствами этой системы, а для преодоления неразрешимой проблемы нужно расширять формальную систему, опираясь на содержательный, качественный анализ. [28]
Результаты Гёделя были получены для арифметики, самого формального направления математики, и позволили предположить, что процесс логического, в том числе математического доказательства, не сводится к использованию только дедуктивного метода, что в нем всегда присутствуют неформальные элементы мышления. В дальнейшем исследования этой проблемы математиками и логиками показали, что "доказательства вовсе не обладают абсолютной, не зависящей от времени строгостью и являются только культурно опосредованными средствами убеждения".4
Иными словами, строгого разделения на формальные и неформальные методы не существует. Можно говорить только о большей или меньшей степени формализованности или, напротив, большей или меньшей опоре на интуицию, "здравый смысл"5.
Специалист по системному анализу должен понимать, что любая классификация условна. Она лишь средство, помогающее ориентироваться в огромном числе разнообразных методов и моделей. Поэтому разрабатывать классификацию нужно обязательно с учетом конкретных условий, особенностей моделируемых систем (процессов принятия решений) и предпочтений ЛПР, которым можно предложить выбрать классификацию.
Следует также оговорить, что новые методы моделирования часто создаются на основе сочетания ранее существовавших классов методов.
Так, методы, названные на рис.6 комплексированными (комбинаторика, топология) начинали развиваться параллельно в рамках линейной алгебры, теории множеств, теории графов, а затем оформились в самостоятельные направления.
Существуют также новые методы, базирующиеся на сочетании средств МАИС и МФПС. Эта группа методов представлена на рис.6 в качестве самостоятельной группы методов моделирования. обобщенно названной специальными методами.
Наибольшее распространение получили следующие специальные методы моделирования систем:
Имитационное динамическое моделирование (System Dynamics Symulation Modeling).
Предложено Дж. Форрестером (США) в 50-х гг., использует удобный для человека структурный язык, помогающий выражать реальные взаимосвязи, отображающие в системе замкнутые контуры управления, и аналитические представления (линейные конечно-разностные уравнения), позволяющие реализовать формальное исследование полученных моделей на ЭВМ с использованием специализированного языка DYNAMO.
Ситуационное моделирование.
Идея предложена Д.А.Поспеловым и реализована на практике Ю.И.Клыковым и Л.С.Загадской. Это направление базируется на отображении в памяти ЭВМ и анализе проблемных ситуаций с применением специализированного языка, разрабатываемого с помощью выразительных средств теории множеств, математической логики и теории языков.
Структурно-лингвистическое моделирование.
Подход возник в 70-е гг. в инженерной практике и основан на использовании для реализации идей комбинаторики структурных представлений разного рода, с одной стороны, и средств математической лингвистики, с другой. В расширенном понимании подхода в качестве языковых (лингвистических) средств используются и другие методы дискретной математики (языки, основанные на теоретико-множественных представлениях, на использовании средств математической логики, семиотики).
Теория информационного поля и информационных цепей (информационный подход к моделированию и анализу систем).
Концепция информационного поля основана на использовании дня активизации интуиции ЛПР законов диалектики, а в качестве средства формализованного отображения - аппарата математической теории поля и теории цепей. Этот подход, для краткости названный информационным, поскольку в его основе лежит отображение реальных ситуаций с помощью информационных моделей [26].
Подход, базирующийся на идее постепенной формализации задач (проблемных ситуаций) с неопределенностью путем поочередного использования средств МАИС и МФПС.
Этот подход к моделированию самоорганизующихся (развивающихся) систем был первоначально предложен одним из авторов учебника на базе концепции структурно-лингвистического моделирования, но в последующем стал основой практически всех методик системного анализа.
Классификация методов моделирования, подобная рассмотренной, помогает осознанно выбирать методы моделирования и должна входить в состав методического обеспечения работ по проектированию сложных технических комплексов, по управлению предприятиями и организациями. Она может развиваться, дополняться конкретными методами, т. е. аккумулировать опыт, накапливаемый процессе проектирования и управления.
Классификации МФПС. Математика непрерывно развивается. Возникают новые области и математические теории, отмирают или вливаются в другие устаревающие разделы. Исследованием структуры (или, как принято говорить архитектуры) математик занимаются многие ученые .
Несмотря на то, что в практике моделирования широко используются теория множеств, математическая логика, математическая лингвистика и другие направления современной математики до сих пор еще не все ученые-математики склонны включать в число математических некоторые из этих направлений. Благодаря работам французских ученых (публикующихся под псевдонимом Н. Бурбаки ), теорию множеств и математическую логику стали признавать разделами математики, а математическую лингвистику и семиотику часто еще не относят к математике. Поэтому, чтобы не обсуждать различные точки зрения (которые постепенно изменяются, развиваются), вместо термина "математические методы" удобно применять предложенный в термин "методы формализованного представления систем" [5].
В большинстве первоначально применявшихся при исследовании систем классификаций выделяли детерминированные и вероятностные (статистические) методы или классы моделей, которые сформировались в конце прошлого столетия.
Затем появились классификации, в которых в самостоятельные классы выделились теоретико-множественные представления, графы, математическая логика и некоторые новые разделы математики. Например, в классификации современного математического аппарата инженера В.П. Сигорский выделяются: множества, матрицы, графы, логика, вероятности.
В одной из первых классификаций, предложенных специально для целей системных исследований украинским академиком А.И. Кухтенко, наряду с выделением таких уровней математического абстрагирования, как общеалгебраический, теоретико-множественный, логико-лингвистический, предлагается рассматривать информационный и эвристический уровни изучения сложных систем.
В данном учебном пособии принята и кратко характеризуется классификация Ф.Е. Темникова, в которой выделяют следующие обобщенные группы (классы) методов:
аналитические (методы классической математики, включая интегро-дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и т. п.; методы математического программирования; первые работы по теории игр и т. п.);
статистические (включающие и теоретические разделы математики - теорию вероятностей, математическую статистику, и направления прикладной математики, использующие стохастические представления - теорию массового обслуживания, методы статистических испытаний (основанные на методе Монте-Карло), методы выдвижения и проверки статистических гипотез А. Вальда и другие методы статистического имитационного моделирования);
теоретико-множественные, логические, лингвистические, семиотические представления (методы дискретной математики), составляющие теоретическую основу разработки языков моделирования, автоматизации проектирования, информационно-поисковых языков;
графические (включающие теорию графов и разного рода графические представления информации типа диаграмм, гистограмм и других графиков).
Разумеется, выше приведены лишь укрупненные группы-направления, конкретные методы которых только в начальный период развития характеризуются рассмотренными особенностями. Эти направления непрерывно развиваются, и в их рамках появляются методы с расширенными возможностями по сравнению с исходными.
Кроме того, в математике постоянно возникают новые направления как бы «на пересечении» методов, отнесенных к приведенным укрупненным группам. В частности, на пересечении аналитических и теоретико-множественных представлений возникла и развивается алгебра групп; параллельно в рамках алгебры групп и теории множеств начала развиваться комбинаторика; теоретико-множественные и графические представления стали основой возникновения топологии; статистические и теоретико-множественные методы инициировали возникновение теории "размытых" множеств Л. Заде, которая, в свою очередь, явилась началом развития нового направления - нечетких формализаций и т. д.
Отметим, что понятия исходных направлений не всегда сохраняются в неизменном виде; в частности, в теории Л.Заде дается иная трактовка понятия вероятности по сравнению со статистической.
Практически невозможно создать единую классификацию, которая включала бы все разделы современной математики. В то же время приведенные направления помогают понять особенности конкретных методов, использующие средства того или иного направления или их сочетания, помогают выбирать методы для конкретных приложений.
|