Скачать 1.03 Mb.
|
#G0 РУКОВОДЯЩИЕ УКАЗАНИЯ ПО КОАГУЛЯЦИИ ВОДЫ НА ЭЛЕКТРОСТАНЦИЯХ СОСТАВЛЕНЫ водно-химическим отделением Всесоюзного дважды ордена Трудового Красного Знамени теплотехнического научно-исследовательского института имени Ф.Э.Дзержинского Авторы канд. техн. наук В.М.Квятковский и инж. А.И.Баулина УТВЕРЖДЕНЫ Главным инженером Главтехуправления С.И.Молокановым 10 марта 1972 г. ВВЕДЕНИЕ Руководящие указания по предварительной очистке воды (применяемой, как правило, перед ее ионированием) методом коагуляции с применением в качестве основного реагента сернокислого алюминия предназначены для использования при проектировании, наладке и эксплуатации водоподготовительных установок электростанций системы Минэнерго СССР. При коагуляции воды перед ионированием и особенно перед химическим обессоливанием требуется глубокое удаление органических загрязнений, соединений железа и нереакционноспособных соединений кремния. Изучение и совершенствование технологии коагуляции, разработка аппаратуры для современных установок большой производительности еще не закончены. Однако признано необходимым уже на данном этапе выпустить руководящие указания по коагуляции воды, поскольку предыдущий инструктивный материал [Л.1] устарел. При составлении Руководящих указаний использованы результаты исследовательских работ ВТИ и опыт проектирования, наладки и эксплуатации водоподготовительных установок, а также литературные материалы. I. НАЗНАЧЕНИЕ И ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ МЕТОДА КОАГУЛЯЦИИ ВОДЫ 1. В практике подготовки воды под коагуляцией понимается сумма мероприятий, направленных на очистку воды от грубой и тонкой взвеси, коллоидно-дисперсных веществ, а также обесцвечивание воды путем введения в обрабатываемую воду специального реагента - коагулянта. При введении коагулянта в обрабатываемой воде образуется осадок - коагулят, который содержит как продукты взаимодействия коагулянта с водой, так и примеси исходной воды. Осадок отделяется от воды, как правило, в осветлителях с последующим доосветлением воды в механических фильтрах (рис.1) или, реже, непосредственно в механических фильтрах (рис.2). ![]() Рис.1. Принципиальная схема коагуляционной установки с осветлителем: 1 - исходная вода после подогрева; 2 - ввод хлора: 3 - ввод щелочи; 4 -осветлитель; 5 - продувка осветлителя; 6 - ввод коагулянта; 7 - ввод флокулянта; 8 - бак коагулированной воды; 9 - насос коагулированной воды; 10 - механический фильтр; 11 - осветленная вода на обессоливание ![]() Рис.2. Принципиальная схема коагуляционной установки без осветлителя: 1 - исходная вода после подогрева; 2 - ввод щелочи; 3 - ввод коагулянта; 4 - смеситель; 5 - ввод флокулянта; 6 - механический фильтр; 7 - коагулированная вода 2. На электростанциях коагуляция применяется для предварительной очистки воды перед ее химическим обессоливанием или катионированием. Назначение коагуляции - удаление веществ, которые вредно влияют на состояние ионитов или недостаточно ими задерживаются и, попадая с добавочной водой в конденсатно-питательный тракт электростанции, теплосети и т.п., ухудшают работу теплосилового оборудования. К таким веществам относятся механические примеси (взвесь), органические соединения, соединения железа, нереакционноспособные соединения кремния. Удаление из воды загрязнений трех последних видов особенно важно на предочистках установок химического обессоливания добавочной воды прямоточных котлов. 3. В настоящее время ведутся работы по созданию отечественных макропористых ионитов для поглощения органических примесей с целью защиты анионитов, применяющихся для глубокого обессоливания воды. Однако, судя по зарубежному опыту [Л.2.] , при наличии предвключенных фильтров с макропористыми ионитами исходную воду поверхностных источников также требуется предварительно очищать с помощью коагуляции (в необходимых случаях совместно с известкованием). Только в этом случае может быть получено такое качество воды, направляемой в анионитовые фильтры, при котором достигается достаточно экономичная работа обессоливающей установки. 4. В природных поверхностных водах, используемых для питания водоподготовительных установок электростанций, в коллоидной степени дисперсности (размер частиц 10 ![]() ![]() Грубодисперсные примеси (размер частиц более 10 ![]() Промежуточные размеры (10 ![]() ![]() Тонкая взвесь и коллоидно-дисперсные вещества могут быть удалены из воды только путем ее реагентной обработки, в частности коагуляцией. 5. Состав соединений железа, присутствующих в природных поверхностных водах, изучен недостаточно. Применяемые способы анализа дают возможность определить лишь общее содержание соединений железа (обычно пересчитываемое на Fe). По литературным данным [Л.3-7], в природных поверхностных водах соединения железа могут находиться в различных стадиях дисперсности: в истинно растворенном состоянии - комплексные неорганические и органические, в частности, гуминовые соединения, железофосфатные и другие соединения; в коллоидно- и грубодисперсном состоянии - гидраты окислов, а также сульфид. Последний, находясь в коллоидно-дисперсном состоянии, способен окисляться кислородом воздуха. Обычно в природных поверхностных водах содержится меньше 1 мг/л соединений железа в пересчете на Fe, иногда несколько миллиграммов. Такое содержание железа в основном может быть обусловлено присутствием истинно растворенных комплексных и коллоидно-дисперсных соединений железа. Грубодисперсные железосодержащие соединения в результаты анализа не входят, так как воду перед анализом принято фильтровать. Истинно растворенные соединения трехвалентного железа могут присутствовать лишь в ничтожно малых количествах, так как при рН>3 они гидролизуются с образованием труднорастворимой гидроокиси. В табл.1 приведены расчетные значения концентраций гидроксокомплексов Fe ![]() ![]() ![]() Таблица 1
Растворимость соединений Fe ![]() ![]() ![]() Таблица 2
Однако Fe ![]() ![]() ![]() 6. Органические вещества поступают в открытые водоемы в результате: - вымывания их из почв и торфяников; - жизнедеятельности, отмирания и разложения водных организмов; - смывания веществ, применяемых для удобрения почвы и борьбы с вредителями сельского хозяйства; - поступления неочищенных или недостаточно очищенных бытовых или производственных сточных вод. Нежелательными загрязнениями, вносимыми этими стоками, являются, в частности, моющие синтетические средства - детергенты, вызывающие пенообразование в осветлителях, затрудняющие очистку воды и применение флокулянта. Состав органических веществ весьма разнообразен, изменчив во времени и различен для разных водоемов. Вещества, вымываемые из почв, называют гумусовыми. Они разделяются на гуминовые и фульвокислоты и их соли. Особенно загрязнены ими реки, имеющие сток из болот. Гуминовые кислоты находятся в водоемах в основном в коллоидно-дисперсном состоянии, растворяются при повышении рН, при подкислении образуют осадок в виде темных хлопьев. Молекулярный вес гуминовых кислот 1200-1400, примерная формула С ![]() ![]() ![]() ![]() Фульвокислоты (креновые и апокреновые кислоты) содержат в среднем 45-48% углерода, 5,2-6% водорода, 43-48% кислорода. Они образуют с натрием, калием, аммонием, кальцием и двухвалентным железом растворимые соли, а с трехвалентным железом и алюминием - малорастворимые. Наиболее окрашенные соединения - гуминовые кислоты, наименее - фульвокислоты [Л.3, 6, 8] . В связи с трудностью раздельного определения различных органических веществ прибегают к суммарной оценке их содержания путем определения окисляемости. Действующая инструкция [Л.9] предлагает: йодатный метод с концентрированием органических веществ на сорбенте, бихроматный и перманганатный методы определения окисляемости. Перманганатная окисляемость является весьма условной характеристикой степени загрязненности воды органическими веществами, так как в условиях проведения анализа они окисляются не полностью и не в одинаковой мере. Тем не менее только этот метод находит практическое применение при контроле за водоподготовкой на электростанциях ввиду сложности и недостаточной доработки других методов. Отсутствие надежных методов определения полного содержания органических веществ в природных и очищенных водах затрудняет контроль за очисткой воды и совершенствование ее методов. 7. Состав кремниевой кислоты mSiO ![]() ![]() Методом коагуляции воду можно очистить от взвешенных и коллоидно-дисперсных веществ. Удаление растворенных примесей может происходить лишь в весьма небольших количествах в результате их сорбции образовавшимся осадком. 8. Основные свойства коллоидно-дисперсных частиц и процессы их коагуляции схематично могут быть описаны следующим образом [Л. 3, 8, 11-14]. Основной отличительной чертой коллоидно-дисперсных систем является наличие поверхности раздела между веществом, их составляющим, и окружающей средой, то есть коллоидные системы всегда гетерогенны. Отличительной чертой коллоидно-дисперсных частиц является высокая степень их раздробленности (размеры частиц находятся в пределах 10 ![]() ![]() ![]() ![]() ![]() ![]() Гетерогенные системы с большой общей поверхностью раздела твердых частиц и среды обладают большим избытком свободной энергии. Всякая система с избыточной свободной энергией самопроизвольно стремится к ее уменьшению. Наиболее ощутимо избыток свободной энергии уменьшается при укрупнении частиц, когда резко уменьшается их суммарная поверхность, поэтому коллоидно-дисперсные частицы агрегативно неустойчивы. Однако процесс самопроизвольного укрупнения частиц (самопроизвольной коагуляции) проходит очень медленно и неполно из-за наличия препятствующих ему стабилизаторов. Коллоидно-дисперсные частицы приобретают стабильность вследствие адсорбции на их поверхности различных веществ. Адсорбция способствует некоторому уменьшению избыточной свободной энергии (последняя расходуется на удержание адсорбированных молекул или ионов на поверхности частиц), однако адсорбционные слои препятствуют сближению частиц и их укрупнению. В естественных водах в коллоидно-дисперсном состоянии могут одновременно находиться вещества разной природы, которым свойственно различное поверхностное натяжение. На частицах разной природы избирательно адсорбируются из окружающей среды те молекулы или ионы, которые уменьшают поверхностное натяжение частиц. В результате адсорбции ионов коллоидно-дисперсные частицы приобретают электрический заряд, знак которого соответствует знаку адсорбированных (потенциалообразующих) ионов. Окружающая среда приобретает при этом заряд противоположного знака в результате адсорбции части ионов коллоидной частицей и создания избыточной концентрации других ионов с зарядом противоположного знака, так называемых противоионов. Таким образом, возникает двойной электрический слой, обусловливающий разность потенциалов ![]() ![]() Рис.3. Строение мицеллы: а - ![]() ![]() 1 - потенциалобразующие ионы; 2 - противоионы; ![]() ![]() Устанавливающаяся фактическая разность потенциалов между движущейся коллоидной частицей и окружающей ее средой называется электрокинетическим или дзета-потенциалом, причем ![]() ![]() ![]() ![]() Коллоидно-дисперсные частицы могут приобретать заряд не только в результате адсорбции ионов, но и вследствие собственной диссоциации. Содержащиеся в природных поверхностных водах частицы глины и гуминовые частицы амфотерны: при одних значениях рН среды они диссоциируют как щелочи, при других, более высоких, как кислоты. Значение рН, при котором амфотерные вещества (амфолиты) не диссоциируют, называется изоэлектрическим. Для гуминовых веществ оно находится в пределах рН=3,5 ![]() Вследствие дипольности молекул воды коллоидные частицы окружены, кроме адсорбционных, еще и гидратационными слоями, которые также препятствуют сближению частиц и, тем самым коагуляции. Адсорбированные ионы и ориентированные молекулы воды являются стабилизаторами коллоидов, придающими им особую устойчивость против коагуляции. Основной задачей в проведении коагуляции коллоидно-дисперсных частиц является разрушение адсорбционных слоев или ослабление их защитного, стабилизирующего действия. Это может быть достигнуто разными способами. Например, при добавлении электролита увеличивается ионная сила раствора, что приводит к сжатию ионной атмосферы коллоидных частиц. Радиус их диффузных слоев, препятствующих сближению, уменьшается. В результате этого становится возможным такое сближение частиц, при котором энергия их взаимного притяжения становится больше энергии их электростатического отталкивания - происходит соединение частиц, коагуляция. Агрегативная устойчивость коллоидных частиц может снижаться также при механическом воздействии, под влиянием температуры, электрического поля, ультразвука и т.д. [Л.12]. В водоподготовке используется, как отмечалось выше, введение в обрабатываемую воду коагулянта. 9. На водоподгоговительных установках электростанций в качестве коагулянтов применяются соли алюминия и железа, главным образом сернокислые. Для предварительной очистки воды методом коагуляции обычно используется сернокислый алюминий Al ![]() ![]() ![]() ![]() 10. При вводе сернокислого алюминия в обрабатываемую воду происходит его гидролиз и образуется гидроокись алюминия Al(ОН) ![]() Al ![]() ![]() ![]() ![]() Наличие в воде бикарбонатов приводит к реакции Н ![]() ![]() ![]() ![]() В молекулярной форме эти реакции можно выразить уравнением Al ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() В литературе [Л.5-7, 13] имеются указания на то, что при рН<7,6 и наличии сульфат-ионов образуются труднорастворимые соединения средних солей алюминия Al ![]() ![]() ![]() ![]() ![]() Гидроокись алюминия - трудно растворимое в воде соединение, произведение его растворимости равно 1,0·10 ![]() ![]() Далее частицы укрупняются и образуют макрохлопья размером 1-2 мм и более. При этом происходит очистка природной воды от содержащихся в ней примесей: коллоиднодисперсных частиц и тонкодисперсной взвеси - на стадии образования микрохлопьев, грубодисперсной взвеси - на стадии образования макрохлопьев. Крупные хлопья под действием силы тяжести либо оседают, либо под действием восходящего потока воды остаются во взвешенном состоянии, что наблюдается в осветлителе, и задерживаются в слое ранее выделившихся частиц контактной среды, либо, наконец, задерживаются при пропуске воды через зернистую загрузку механического фильтра. Как видно из уравнения (см.п.10), при вводе сернокислого алюминия в обрабатываемую воду в ней увеличивается содержание сульфат-иона эквивалентно дозе коагулянта, в такой же мере уменьшается щелочность, возрастает содержание свободной угольной кислоты, в результате чего увеличивается коррозионная агрессивность воды. Иногда в литературе [Л.8, 9, 13] реагент, используемый для очистки воды методом коагуляции, называют не "коагулянт", а "коагулятор". Такая терминология нежелательна. Коагулятор - вещество, непосредственно участвующее в процессе коагуляции (например, коагулянт - Al ![]() ![]() ![]() ![]() 11. Сернокислый алюминий на водоподготовительные установки поставляется двух видов (табл.3): Таблица 3
________________ * Глинозем сернокислый технический (очищенный) твердый сорта В; ** Глинозем сернокислый неочищенный. ![]() Оба реагента поставляются навалом, первый - в виде плит белого цвета, второй - в виде ноздреватых кусков серого цвета. 12. Соли двухвалентного железа (обычно сернокислого) применяются для коагуляции воды, проводимой при одновременной декарбонизации путем известкования при рН>9. Сведения о таком методе обработки воды содержат "Руководящие указания по известкованию воды на электростанциях" (СЦНТИ ОРГРЭС, 1973). Для коагуляции при известковании используется железный купорос Fe ![]() ![]() ![]() ________________ * Действует #M12291 1200019024ГОСТ 6981-94#S. - Примечание "КОДЕКС". При коагуляции без известкования значение рН для окисления двухвалентного железа в трехвалентное и для гидролиза ионов железа недостаточно. С целью ускорения процессов окисления и гидролиза можно прохлорировать раствор реагента или обрабатываемую воду перед введением в нее закисного железа. Последнее будет окисляться хлором 2Fe ![]() ![]() ![]() ![]() Теоретический расход хлора по этой реакции составляет 17,75 мг на 1 мг-экв коагулянта. Хлор расходуется также на окисление некоторых примесей природных вод. Так называемая хлоропоглощаемость воды может составлять величину порядка 1-5 мг/л Cl ![]() 13. Соли трехвалентного железа - сернокислого окисного Fe ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Fe ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2FeCl ![]() ![]() ![]() ![]() ![]() ![]() Однако эти реагенты на электростанции централизованно не поставляются, и применение их ограничивается возможными случаями местного снабжения. При коагуляции окисным сернокислым и хлорным железом в лабораторных условиях были получены примерно такие же результаты очистки воды, как и при использовании сернокислого алюминия. 14. Коагуляция воды возможна с помощью алюмината натрия NaAlO ![]() 2NaAlO ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Последний недостаток оказывается несущественным в тех случаях, когда при применении других коагулянтов требуется одновременное введение едкого натра из-за недостатка исходной щелочности. Поэтому использование алюмината натрия технологически целесообразно, в частности, для вод с малой исходной щелочностью. Тогда, когда повышение щелочности коагулированной воды нежелательно, алюминат натрия может быть применен совместно с сернокислым алюминием, сернокислым или хлорным окисным железом, например: 6NaAlO ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() В этом случае содержание сульфат-иона в воде возрастает, но меньше, чем при дозировании эквивалентного количества одного сернокислого алюминия. Алюминат натрия не применяется на водоподготовительных установках электростанций из-за отсутствия его поставки. 15. В перспективе (после организации производства) может найти применение коагулянт оксихлорид алюминия [Al ![]() ![]() ![]() 2Al ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
Методические указания по организации учета топлива на тепловых электростанциях рд 34. 09. 105-96 Утверждено Российским акционерным обществом энергетики и электрификации "еэс россии" 12. 05. 96 г |
![]() |
Приказ от 30. 06. 2003 г. №265 Москва Об утверждении Инструкции по... Утвердить прилагаемую Инструкцию по предупреждению и ликвидации аварий на тепловых электростанциях |
![]() |
Методические указания. Методические указания по определению расходов... Методические указания предназначены для использования инженерно-техническими работниками коммунальных теплоэнергетических предприятий... |
![]() |
Работа над инструктивным материалом инструктивный В русском: Содержащий в себе руководящие указания, инструкции; инструктирующий; совершаемый с целью инструктирования; установочный.... |
![]() |
Руководство по эксплуатации, шт Устройство и принцип работы Электроактиватор воды бытовой «карат-м» (далее электроактиватор) предназначен для приготовления двух типов воды: анолита («мертвой»... |
![]() |
Методические указания по обследованию предприятий, эксплуатирующих... Методические указания предназначены для государственных инспекторов котлонадзора |
![]() |
Руководство по эксплуатации Активатор (электроактиватор) воды бытовой ап-1 Активатор (электроактиватор) воды бытовой ап-1 (далее электроактиватор), предназначен для приготовления в домашних условиях двух... |
![]() |
Руководство по эксплуатации агфт 940. 001РЭ Электроактиватор воды бытовой ап-1 (далее – электроактиватор), предназначен для приготовления в домашних условиях двух типов воды:... |
![]() |
Курсовая работа По логистике на тему: «Анализ организации снабжения судов водой» Прием и хранение воды на судне, использование забортной воды, раздача воды потребителям |
![]() |
Рупк 78 Руководящие указания по эксплуатации, ревизии и ремонту пружинных... Визии. Приведены порядок проведения ревизии и ремонта, а также необходимое для этого оборудование. В качестве справочного материала... |
![]() |
Методические указания по проведению ... |
![]() |
Ael 100 (далее — диспенсер). Диспенсер предназначен для охлаждения... Настоящая инструкция по эксплуатации распространяется на водный диспенсер модели ael100 (далее — диспенсер). Диспенсер предназначен... |
![]() |
Ael 100 (далее — диспенсер). Диспенсер предназначен для охлаждения... Настоящая инструкция по эксплуатации распространяется на водный диспенсер модели ael100 (далее — диспенсер). Диспенсер предназначен... |
![]() |
Инструкция по эксплуатации общие сведения Прибор бытовой для получения католита и анолита («живой» и «мертвой» воды) (далее «прибор») предназначен для приготовления в домашних... |
![]() |
Методические указания по разработке инструкций и режимных карт по... Методические указания предназначены для специалистов пусконаладочных организаций, осуществляющих пусконаладочные работы котлов, предприятий... |
![]() |
Методические указания по разработке инструкций и режимных карт по... Методические указания предназначены для специалистов пусконаладочных организаций, осуществляющих пусконаладочные работы котлов, предприятий... |
Поиск |