Скачать 0.78 Mb.
|
1.2. Построения плановых опорных геодезических сетей способом триангуляции Известные способы триангуляции, трилатерации и полигонометрии, а также сочетания этих способов относятся к традиционным способам построения плановых опорных инженерно-геодезических сетей. Некоторые из этих способов, как например триангуляция сегодня утратили своё значение. Другие, как полигонометрия, наоборот, в связи с широким внедрением электронных тахеометров, наиболее актуальны, а в сочетании со спутниковыми определениями составляют основу методов и схем построения и сгущения инженерно-геодезических сетей. Точность определения планово-высотного положения, плотность и условия закрепления пунктов (точек) геодезической основы должны удовлетворять требованиям производства крупномасштабных топографических съёмок, в том числе для разработки проектной и рабочей документации предприятий, сооружений, гражданских объектов. Кроме того, точность сетей должна быть достаточной для выноса проектов в натуру, выполнения специальных инженерно-геодезических работ, наблюдений за опасными природными и техногенными процессами, обеспечения строительства и эксплуатации объектов. Технические требования к построению геодезической основы традиционными способами приведены в СП 11-104-97. Для инженерных целей преимущественно развиваются сети 4 класса, 1 и 2 разрядов, а на территориях больших городов могут строиться сети 2 и 3 классов с большими длинами сторон и более точными измерениями. Класс сети определяется площадью участка изысканий. Так, если площадь участка составляет от 25 до 50 км2 и от 10 до 25 км2, то плановая опорная геодезическая сеть развивается построениями 4 класса, 1 и 2 разрядов.. Высотные опорные сети для случая больших площадей строятся нивелированием III и IV классов; для меньших площадей нивелированием IV класса. Таблица 1.1. Характеристики точности классов построения инженерно-геодезических сетей
Если площадь участка изысканий заключена в пределах от 5 до 10 км2, то плановая основа создаётся построениями 1 и 2 разрядов; высотная основа нивелированием IV класса. Для площадей менее 1 км2 опорные сети не предусмотрены, а только съёмочные сети. Съёмочные сети строятся теодолитными ходами или триангуляцией взамен теодолитных ходов. Высоты съёмочных сетей определяются техническим нивелированием независимо от площади съёмок. В таблице 1.1. приведены характеристики точности классов построения инженерно-геодезической основы способами триангуляции, полигонометрии, трилатерации и теодолитными ходами. Высотная привязка центров пунктов опорной геодезической сети должна производиться нивелированием III и IV классов или техническим нивелированием, для которых предельные погрешности определения превышений на станции соответственно равны 2,6; 5,0 и 10,0 мм (см. СП-11-104-97). Триангуляцией называют построенные на местности фигуры из треугольников, в которых измерены все углы и одна или для целей контроля, две из сторон. Вершины треугольников закрепляют подземными центрами и обозначают наземными знаками – сигналами и пирамидами. В таких треугольниках по формулам тригонометрии легко находятся недостающие величины, что позволяет вычислять координаты вершин треугольников. Триангуляционные сети используются в качестве основы для топографических съёмок, для производства разбивочных работ, а также для наблюдений за осадками и деформациями зданий и сооружений. В зависимости от назначения геодезической сети, размеров и формы объекта изысканий или строительства форма триангуляционных построений, размеры сторон и точность измерений в триангуляционных сетях могут значительно различаться. Некоторые типовые схемы простейших триангуляционных построений приведены на рис. 1.1. Таблица 1.2. Некоторые характеристики построения опорных сетей способом триангуляции
На рисунках измеренные стороны, называемые базисами, обозначены буквой b. Отличительной особенностью триангуляционных построений является минимальный объём линейных измерений, что являлось весьма весомым аргументом в пользу триангуляции во времена, когда электронные способы измерения расстояний ещё не были внедрены в производство. В таблице 1.2 приведены некоторые требования к развитию опорной геодезической сети способом триангуляции для построений 4 класса 1 и 2 разрядов. Специальные инженерно-геодезические сети, построенные способом триангуляции (например, тоннельная триангуляция, гидротехническая триангуляция или мостовая триангуляция) имеют другие технические показатели, причём более жёсткие. В соответствии с действующими нормативными документами основными показателями класса триангуляции являются средние квадратические ошибки измеренных углов mβ, средние относительные ошибки наиболее слабых сторон ma/a и ошибки исходных сторон (базисов) mb/b. Для разбивочных сетей характерной особенностью является соблюдение заданной ошибки во взаимном положении соседних пунктов или пунктов, образующих опорную сторону для разбивочных работ. Такая специфика разбивочных сетей обусловлена тем, что с её пунктов производится разбивка точек, принадлежащих одному сооружению. Требования к взаимному положению точек некоторых сооружений могут быть достаточно жёсткими. Триангуляционная сеть 4 класса проектируется на карте, руководствуясь при этом нормативными требованиями СП. Сеть должна быть локальной, хотя отдельные её пункты могут быть совмещены с имеющимися на карте пунктами государственной сети, считая их пунктами более высокого класса. Проектируя сеть на карте, следует руководствоваться тем положением, что наблюдения углов в сети будут выполняться со штатива на пирамиды высотой 6-8 м. Условия прохождения визирного луча между пунктами могут быть определены по профилям местности. Выбор схемы или формы сети остаётся за проектировщиком в соответствии с условиями местности. Для территорий городов, населённых пунктов и строительных площадок могут оказаться целесообразными центральные системы или системы из треугольников, покрывающих весь участок. В Рис. 1. 2. Ряд триангуляции триангуляционной сети обязательно должно быть не менее двух исходных (базисных) сторон. В случае, если на участке имеется твёрдая сторона (между существующими пунктами), в проекте должно быть предусмотрено измерение ещё одной базисной стороны. Выполнение этих требований обеспечивает контроль масштаба сети. Для наглядности проект сети (в уменьшенном масштабе) отдельным рисунком изображается на отдельном листе бумаги (например, рис. 1.2). Для предварительной оценки проекта типичных схем построения сети можно пользоваться приближёнными формулами. Оценка в данном случае сводится к определению средней квадратической ошибки взаимного положения пунктов слабой стороны запроектированной сети. Слабой считается наиболее удалённая от обоих базисов сторона. При равенстве числа треугольников до разных сторон наиболее слабой будет сторона с наименьшей длиной. На рис. 1.2 приведен ряд триангуляции (цепочка треугольников), опирающийся на две исходные базисные стороны b1 и b2. Стороны S1, S2,…, общие для двух соседних треугольников, называют связующими, а противолежащие им углы А, В – связующими углами. Стороны S используются в последовательных вычислениях координат вершин треугольников и проходящую по ним линию называют ходовой. Так сторона S1 определится из соотношения . (1.1) Для стороны S2 , будем иметь . (1.2) В такой последовательности, решая треугольники, находят все стороны S ходовой линии Стороны с1, c2… называют промежуточными, а противолежащие им углы С1, С2, …, промежуточными углами. Проектирование триангуляционных сетей выполняют на топографических картах 1:10000 и 1:25000 исходя из назначения сети, формы и площади территории, её рельефа и застроенности, наличия пунктов государственной сети и других параметров. 1.3. Способ трилатерации Метод трилатерации, как и триангуляция предусматривает построение на местности геодезических сетей из треугольных фигур в виде цепочек треугольников, геодезических четырёхугольников и центральных систем, в которых измеряются не углы, а длины сторон. Сети трилатерации создаются для решения ряда инженерно-геодезических задач и строятся в виде свободных сетей, состоящих из отдельных типовых фигур и их комбинаций или в виде сплошных сетей треугольников. Рис. 1.3. Треугольник трилатерации Базовой фигурой сети трилатерации является треугольник с измеренными сторонами a, b, c, см. рис. 1.3. Угол α может быть вычислен через тригонометрические функции или по формулам: ; (1.3.) ; (1.4) . (1.5) Для линейно протяжённых объектов сеть трилатерации создают из цепочки треугольников или четырёхугольников. Длины сторон в фигурах трилатерации измеряются электронными тахеометрами и светодальномерами, а в сетях, создаваемых в качестве разбивочной основы, при строительстве зданий стороны измеряются компарированной рулеткой в 30 и 50 метров, что очень удобно на бетонной поверхности. Необходимые нормативные требования к проектированию сети трилатерации 4 класса также выбираются из СП 11-104-97. Всё, что сказано применительно к триангуляции, относится и к сети трилатерации с учётом особенностей её построения. Оценка проекта сети трилатерации может быть выполнена как на компьютере, при наличии соответствующей программы, так и при помощи приближённых формул для оценки точности типовых построений. В любом случае возникает необходимость в обозначении абсолютной ошибки измерения стороны сети. Для сетей 4 класса относительная средняя квадратическая ошибка измерения стороны должна быть не более 1:100000. Следовательно, абсолютная ошибка для разных длин сторон будет различной. В силу этого необходимо заранее определить рекомендуемый светодальномер или электронный тахеометр, обеспечивающий эту точность на минимальных длинах проектируемых линий. Формулы для предварительной оценки точности проекта сети приведём для свободного ряда трилатерации (см. Зайцев А.К. Трилатерация.-М., Недра, 1989, 216 с.). Обозначим: ms – средняя квадратическая ошибка измерения сторон ряда трилатерации; k – число треугольников от исходной стороны до оцениваемой связующей стороны; β – среднее значение связующего угла ряда; М – ошибка взаимного положения двух пунктов связующей стороны k – го треугольника; mt – средний квадратический продольный сдвиг; mu – средний квадратический поперечный сдвиг пунктов k – го треугольника. Тогда: (1.6) Расчёты по таким формулам для предварительного обоснования проектных решений достаточно эффективны в силу своей простоты и оперативности. Средняя квадратическая ошибка вычисленного угла может быть найдена по формуле , (1.7) где ma, mb и mc - средние квадратические ошибки измерения сторон; (1.8) где ha – высота треугольника, опущенная из вершины на сторону a. Для линейно протяжённых объектов сеть трилатерации создают из цепочки треугольников. Одним из недостатков вытянутого ряда цепочки треугольников с измеренными сторонами является значительное превышение поперечного сдвига конечных точек ряда по отношению к продольному. При оценке ожидаемой точности ряда равносторонних треугольников трилатерации используют формулы: а) для продольного сдвига (1.9) (1.10) где mS – средняя квадратическая ошибка измерения сторон; N - число фигур ряда; б) для поперечного сдвига (1.11) где k – порядковый номер связующей стороны; в) для дирекционного угла связующей стороны (1.12) где S – длина стороны треугольников. Недостатком сетей трилатерации из треугольников является также отсутствие полевого контроля качества измерений для каждой фигуры. Действительно, сумма вычисленных углов треугольника всегда будет равна 180° при любых ошибках измерения сторон, даже при грубых промахах. В связи с этим на практике взамен фигур из треугольников строят сети из геодезических четырёхугольников. В каждом геодезическом четырёхугольнике измеряются две диагонали и все четыре стороны. Ясно, что одно из этих измерений является избыточным и может быть вычислено по результатам измерения других сторон. Это может служить полевым контролем качества измерений длин линий. Кроме того, геодезический четырёхугольник является более жёсткой фигурой и ряд, составленный из таких фигур, обладает более высокой точностью. Оценка точности ряда геодезических четырёхугольников, состоящего из квадратов и уравненного за условия фигур, может быть выполнена по следующим формулам: (1.13) Наибольшее применение в практике инженерно-геодезических работ сети трилатерации получили при строительстве высотных зданий, дымовых труб, атомных и тепловых электростанций, а также при монтаже сложного технологического оборудования. В таких сетях высокую точность измерения длин сторон (до десятых долей миллиметра) обеспечивают, используя высокоточные светодальномеры, инварные проволоки, а в некоторых случаях и жезла специальной конструкции. Сети трилатерации с короткими сторонами называют сетями микротрилатерации. |
Программа и методические указания по курсу «прикладная геодезия» Программа и методические указания по курсу «Прикладная геодезия». Часть Изд. МиигаиК. Упп «Репрография», 2012 г., с. 52 |
Методические указания по выполнению практических и лабораторных работ... Методические указания предназначены для обучающихся по специальностям технического профиля 21. 02. 08 Прикладная геодезия |
||
Методические указания к учебной практике по прикладной геодезии,... Авакян В. В. Прикладная геодезия. Геодезическое обеспечение строительного производства», изд. «Амалданик», М., 2013 г., с. 431 |
Методические указания содержат задания к лабораторным работам по... Методические указания предназначены для студентов направления «Прикладная информатика» профиля «Прикладная информатика в экономике»,... |
||
Рабочая программа учебной дисциплины история укрупненная группа 21.... Укрупненная группа 21. 00. 00 Прикладная геология, горное дело, нефтегазовое дело и геодезия |
Методические указания к выполнению kjrcobou и дипломной работ по курсу Методические указания к выполнению курсовой и дипломной работ по курсу «Экономика и организация производства на предприятия приборостроения»:... |
||
Методические указания для теоретических, лабораторно- практических... ... |
Инструкция по топографической съемке в масштабах 1: 5000, 1: 2000,... Методические указания и задания для контрольных работ по курсу “Геодезия” предназначены для студентов 2-ых курсов очных факультетов... |
||
Методические указания по выполнению лабораторных работ Издательство Инженерная геодезия. Методические указания по выполнению лабораторных работ. Составители: Шешукова Л. В., Тютина Н. М., Клевцов Е.... |
Методические указания Ростов-на-Дону 2003 ббк 60. 5: ббк 65. 9(2)... Практикум по курсу «Социология управления»: Методические указания. – Ростов н/Д: Рост гос ун-т путей сообщения, 2003. – 72 с |
||
Методические указания по выполнению лабораторных работ по дисциплине “Базы данных” Методические указания предназначены для студентов специальностей 230401 «Прикладная математика», 230105 «Программное обеспечение... |
Рабочая программа профессионального модуля картографо-геодезическое... Укрупненная группа 21. 00. 00 Прикладная геология, горное дело, нефтегазовое дело и геодезия |
||
Методические указания для выполнения лабораторных работ для студентов... ... |
Методические указания по дисциплине “Системы управления базами данных” Методические указания предназначены для студентов специальностей 230105 «Программное обеспечение вычислительной техники и автоматизированных... |
||
Рабочая программа дисциплины "геодезия" основной образовательной... Рабочая программа обсуждена и одобрена на заседании кафедры "Кадастр и геодезия" |
Методические указания по расчету показателей экономической эффективности... «Прикладная информатика (в экономике)» и могут быть использованы для обоснования целесообразности автоматизации или совершенствования... |
Поиск |