Скачать 5.62 Mb.
|
Глава 5 ВЫСОТА ПОЛЕТА 1. Классификация высот полета от уровня измерения Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота измеряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровня начала отсчета различают следующие высоты полета: истинную, абсолютную и барометрическую (рис. 5.1). Истинной высотой Ни называется высота полета, измеряемая относительно пролетаемой местности. В горизонтальном полете истинная высота изменяется соответственно изменению рельефа местности. Абсолютной высотой Набс называется высота полета, измеряемая относительно уровня Балтийского моря. Барометрической высотой Нб называется высота полета, измеряемая относительно изобарической поверхности атмосферного давления, установленного на шкале барометрического высотомера. Барометрическая высота может быть: 1) относительной Но, если она измеряется относительно давления аэродрома вылета или посадки (используется при полетах ниже нижнего эшелона в зоне взлета и посадки); Рис. 5.1. Классификация высот от уровня измерения 2) приведенной Нприв, если она измеряется относительно минимального давления участка трассы, которое приведено к уровню моря (используется при визуальных полетах по маршруту ниже нижнего эшелона); 3) условно барометрической Н760, если она измеряется относительно условного уровня давления 760 мм рт. ст. (используется для выдерживания заданных эшелонов при полетах по трассам и в зоне ожидания). 2. Способы измерения высоты полета Основными способами измерения высоты полета являются барометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно изменяющегося с высотой. Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета косвенным путем, измеряя атмосферное давление, которое изменяется с высотой по определенному закону. Барометрический способ измерения высоты связан с рядом ошибок, которые, если их не учитывать, приводят к значительным погрешностям в определении высоты. Несмотря на это, барометрические высотомеры ввиду простоты и удобства пользования широко применяются в авиации. Радиотехнический способ измерения высоты основан на использовании закономерностей распространения радиоволн. Известно, что радиоволны распространяются с постоянной скоростью и отражаются от различных поверхностей. Используя эти свойства радиоволн, можно определять высоту полета самолета. Принцип измерения высоты радиотехническим способом можно представить следующим образом. На самолете устанавливается передатчик и приемник. Передатчик излучает радиосигналы короткими импульсами, которые направляются антенной к земле и одновременно поступают на приемник. Дойдя до земной поверхности, сигналы отражаются и принимаются приемником, который связан с индикаторным устройством. Последнее по интервалу времени между поступлением в приемник прямого и отраженного радиосигналов определяет высоту полета самолета, которая отсчитывается по шкале. Современные радиовысотомеры работают на частотном (радиовысотомеры малых высот) и на импульсном (радиовысотомеры больших высот) методах измерения высоты и показывают истинную высоту полета. Это является их преимуществом перед барометрическими высотомерами, так как барометрическая высота, как правило, отличается от истинной. 3. Ошибки барометрических высотомеров Барометрические высотомеры имеют инструментальные, аэродинамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ деталей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера, заносятся в специальную таблицу и учитываются в полете. Аэродинамические ошибки ΔНа возникают в результате неточного измерения атмосферного давления на высоте полета вследствие искажения воздушного потока, особенно при полете на больших скоростях. Эти ошибки зависят от скорости полета, типа приемника, воспринимающего атмосферное давление, и места его расположения. Они определяются при испытаниях самолетов и заносятся в таблицу поправок. Для упрощения учета инструментальных и аэродинамических поправок составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабине самолета (табл. 5.1). Таблица 5. 1 Показания высотомера с учетом суммарных поправок
Методические ошибки возникают вследствие несовпадения фактического состояния атмосферы с расчетными данными, положенными в основу для расчета шкалы высотомера. Шкала высотомера рассчитана для условий стандартной атмосферы на уровне моря: давление воздуха Ро=760 мм рт. ст., температура t0= + 15°С, температурный вертикальный градиент tгр=6,5° на 1000 м высоты. Использование стандартной атмосферы предполагает, что заданной высоте соответствует вполне определенное давление. Но так как в каждом полете действительные условия атмосферы не совпадают с расчетными, то высотомер показывает высоту с ошибками. Барометрическому высотомеру присущи также ошибки вследствие того, что он не учитывает изменения топографического рельефа местности, над которой пролетает самолет. Методические ошибки барометрического высотомера делятся на три группы: 1) ошибки от изменения атмосферного давления у земли; 2) ошибки от изменения температуры воздуха; 3) ошибки от изменения рельефа местности. Ошибки от изменения атмосферного давления у земли. Барометрический высотомер измеряет высоту полета относительно уровня изобарической поверхности, атмосферное давление которой установлено на шкале давлений высотомера. Он не учитывает изменения давления по маршруту. Обычно атмосферное давление в различных точках земной поверхности в один и тот же момент неодинаковое. На рис. 5.2 показано, что на аэродроме вылета давление равно 760 мм рт. ст., а по маршруту полета оно в определенных точках равно 750 и 765 мм рт. ст. Перед вылетом стрелки высотомера устанавливают на нуль, при этом шкала давлений высотомера установится на давление аэродрома вылета (в приведенном примере шкала давлений установится на отсчет 760 мм рт. ст.). Если пилот по маршруту будет выдерживать заданную приборную высоту, то истинная высота будет изменяться в зависимости от распределения атмосферного давления у земли. При падении атмосферного давления по маршруту истинная высота будет уменьшаться, при повышении давления — увеличиваться. Как видно из рисунка, изменение истинной высоты происходит вследствие изменения атмосферного Рис. 5.2. Ошибки высотомера от изменения давления у земли Рис. 5.3 Ошибки высотомера от изменения температуры воздуха давления на уровне, относительно которого ведется отсчет истинной высоты. Изменение атмосферного давления с высотой характеризуют барометрической ступенью — высотой, на которую надо подняться или опуститься от исходного уровня, чтобы давление изменилось на 1 мм рт. ст. В практике барометрическую ступень для малых высот берут равной 11 м. Следовательно, каждому миллиметру изменения давления у земли соответствует 11 м высоты, т. е. ΔНб=11·ΔР. Ошибки от изменения атмосферного давления у земли учитываются следующим образом: 1) перед вылетом — установкой стрелок высотомера на нуль; 2) перед посадкой — установкой на высотомере давления аэродрома; 3) при расчете высот — путем учета поправки на изменение атмосферного давления (ΔНб). Ошибки от изменения температуры воздуха. Шкала высотомера тарируется по стандартной средней температуре воздуха в слое измеряемой высоты. Поэтому высотомер будет правильно показывать высоту полета только при совпадении фактической средней температуры воздуха с расчетной. Но в реальных условиях фактическая температура воздуха, как правило, не совпадает с расчетной. Поэтому высотомер показывает высоту с ошибкой. Сущность этой ошибки заключается в том, что при изменении температуры воздуха у земли происходит изменение температуры и давления воздуха на высоте. В холодное время года воздух становится более плотным, и в этом случае давление с поднятием на высоту уменьшается быстрее, чем в теплое время, когда воздух обладает меньшей плотностью. Методическая температурная поправка высотомера ΔНt=ΔНпр Рис. 5.4. Ошибки высотомера от изменения рельефа местности где Нпр— приборная высота полета; tср.фак — средняя фактическая температура воздуха в слое от нулевого уровня до высоты полета; ΔTср —разность между средней фактической температурой и средней стандартной температурой для данной, высоты. Знак поправки определяется знаком ΔTср. Из формулы следует, что высотомер при температурах у земли ниже +15° будет завышать, а при температурах выше +15° занижать показания высоты (рис. 5.3). Температурная ошибка особенно опасна при полетах на малых высотах и в горных районах в холодное время года. В практике считают, что для малых высот каждые 3° отклонения фактической температуры воздуха от стандартной вызывают ошибку, равную 1% измеряемой высоты. Обычно методическая температурная поправка высотомера учитывается с помощью НЛ-10 М. Ошибки от изменения рельефа местности. Эти ошибки возникают потому, что высотомер в продолжение всего полета указывает высоту не над пролетаемой местностью, а относительно уровня изобарической поверхности, атмосферное давление которого установлено на высотомере. Чем разнообразнее рельеф пролетаемой местности, тем больше будут расходиться показания высотомера с истинным значением высоты (рис. 5.4). Для определения истинной высоты полета необходимо учитывать поправку на рельеф пролетаемой местности. Высота рельефа определяется по карте. При расчете истинной высоты поправка на рельеф алгебраически вычитается из абсолютной высоты, а при расчете приборной высоты прибавляется. 4. Расчет времени и места набора высоты заданного эшелона Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое время будет набрана заданная высота полета. Время набора высоты рассчитывается по высоте Рис. 5.5. Определение времени и места набора высоты заданного эшелона набора и вертикальной скорости набора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Пример. Hэш=6000м; Нотхода = 400 м; Раэр=740 мм рт. ст.; W = 300 км/ч; VB=5 м/сек; Т отхода = 14.30 (рис. 5.5). Определить: Т ок наб и Sнаб. Решение. 1. Определяем барометрическую высоту аэродрома: Нб.аэр = (760 — Раэр)·11 = (760—740)·11 =220 м. 2. Находим высоту набора: Ннаб = Нэш — Нб.аэр — Нотх = 6000 — 220 — 400 = 5380 м. 3. Рассчитываем время набора высоты на НЛ-10М (рис. 5.6): tнаб === 1076 сек18 мин 4. Определяем время окончания набора заданной высоты: Ток.наб = Tотх + Tнаб =14.30 + 0.18==14.48. 5. Находим пройденное самолетом расстояние за время набора высоты: Sнаб =Wtнаб = 300·0,3 = 90 км. 5. Расчет времени и места начала снижения Выход на аэродром посадки выполняется на указанной диспетчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты Пример. Hэш=4200 м; VB— 10 м/сек; W = 450 км/ч; Hподхода = 500 м; Рaэр=750 мм. рт. ст.; Tприб = 12.20. Определить: Tнач сн и Sсн. Решение. 1. Определяем барометрическую высоту аэродрома: Нб.аэр = (760 - Раэр) · 11 = (760 - 750) · 11 = 110 м. 2. Находим высоту снижения: Hсн = Hэш — H6.аэр — Hподх = 4200 — 110 — 500 = 3590 м. Если необходимо выйти на аэродром на заданном эшелоне, высота снижения определяется как разность между эшелоном полета и эшелоном выхода на аэродром. 3. Рассчитываем время снижения (на НЛ-10М —см. рис. 5.6): tсн===360 сек = 6 мин. 4. Определяем время начала снижения: Тнач.сн== Тприб — tсн = 12.20 — 0.06 = 12.14. 5. Находим пройденное самолетом расстояние за время снижения: Sсн = Wtсн =450 — 0,1 =45 км. 6. Расчет вертикальной скорости снижения или набора высоты В практике самолетовождения бывают случаи, требующие смены эшелона полета. При необходимости диспетчер указывает экипажу время начала и окончания смены эшелона или задает участок, на котором должно быть произведено снижение. На основании указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке. Пример. Hэш=5700 м; Hэш.нов=4500 м; Sсн=40 км; W=480 км/ч. Определить вертикальную скорость, обеспечивающую смену эшелона на заданном участке. Решение. 1. Определяем на НЛ-10М время пролета заданного участка, т. е. время снижения: tсн=5 мин. 2. Находим высоту снижения: Hсн= Hэш - Hэш.нов = 5700 - 4500 = 1200 м. 3. Рассчитываем вертикальную скорость: Расчет вертикальной скорости обычно выполняется на НЛ-10М. Для этого необходимо время снижения, взятое по шкале 2, подвести под высоту снижения, взятую по шкале 1, и против прямоугольного индекса с числом 10 шкалы 2 отсчитать по шкале 1 вертикальную скорость. Этим ключом можно пользоваться, когда время снижения не превышает 16,6 мин. Имеется универсальный ключ расчета вертикальной скорости, позволяющий определять ее при любом времени снижения. В этом случае прямоугольный индекс с числом 10 подводят под время снижения, взятое по шкале 1. Затем против высоты снижения, взятой по шкале 1, отсчитывают вертикальную скорость по шкале 2. При этом следует иметь в виду, что 1 ч шкалы соответствует вертикальной скорости 1 м/сек, 2 ч шкалы — 2 м/сек. и т. д. Для быстрого и правильного определения десятых долей вертикальной скорости необходимо количество минут, отсчитанное по шкале 2 после целых единиц вертикальной скорости, разделить на 6. Пример. tсн=19 мин; Hсн=|3200 м. Определить Vв. Применяя указанное правило, получаем: Vв=2,8 м/сек. |
Поиск |