1. Понятие персонального компьютера
1.1 История развития персонального компьютера
Рассматривая историю общественного развития, марксисты утверждают, что «история есть ни что иное, как последовательная смена отдельных поколений». Очевидно, это справедливо и для истории компьютеров.
Вот некоторые определения термина «поколение компьютеров», взятые из 2-х источников. «Поколения вычислительных машин - это сложившееся в последнее время разбиение вычислительных машин на классы, определяемые элементной базой и производительностью». «Поколения компьютеров - нестрогая классификация вычислительных систем по степени развития аппаратных и в последнее время - программных средств»1.
Утверждение понятия принадлежности компьютеров к тому или иному поколению и появление самого термина «поколение» относится к 1964 г., когда фирма IBM выпустила серию компьютеров IBM/360 на гибридных микросхемах (монолитные интегральные схемы в то время ещё не выпускались в достаточном количестве), назвав эту серию компьютерами третьего поколения. Соответственно предыдущие компьютеры - на транзисторах и электронных лампах - компьютерами второго и третьего поколений. В дальнейшем эта классификация, вошедшая в употребление, была расширена и появились компьютеры четвёртого и пятого поколений.
Для понимания истории компьютерной техники введённая классификация имела, по крайней мере, два аспекта: первый - вся деятельность, связанная с компьютерами, до создания компьютеров ENIAC рассматривалась как предыстория; второй - развитие компьютерной техники определялось непосредственно в терминах технологии аппаратуры и схем.
Второй аспект подтверждает и главный конструктор фирмы DEC и один из изобретателей мини-компьютеров Г.Белл, говоря, что «история компьютерной индустрии почти всегда двигалась технологией».
Переходя к оценке и рассмотрению различных поколений, необходимо прежде всего заметить, что поскольку процесс создания компьютеров происходил и происходит непрерывно ( в нём участвуют многие разработчики из многих стран, имеющие дело с решением различных проблем ), затруднительно, а в некоторых случаях и бесполезно, пытается точно установить, когда то или иное поколение начиналось или заканчивалось.
В 1883 г. Томас Альва Эдисон, пытаясь продлить срок службы лампы с угольной нитью ввёл в её вакуумный баллон платиновый электрод и положительное напряжение, то в вакууме между электродом и нитью протекает ток.
Не найдя никакого объяснения столь необычному явлению, Эдисон ограничивается тем, что подробно описал его, на всякий случай взял патент и отправил лампу на Филадельфийскую выставку. О ней в декабре 1884 г. в журнале «Инженеринг» была заметка «Явление в лампочке Эдисона».
Американский изобретатель не распознал открытия исключительной важности (по сути это было его единственное фундаментальное открытие - термоэлектронная эмиссия).Он не понял, что его лампа накаливания с платиновым электродом по существу была первой в мире электронной лампой.
Первым, кому пришла в голову мысль о практическом использовании «эффекта Эдисона» был английский физик Дж. А. Флеминг (1849 - 1945 ). Работая с 1882 г. консультантом эдисоновской компании в Лондоне, он узнал о «явлении» из первых уст - от самого Эдисона. Свой диод - двухэлектродную лампу Флейминг создал в 1904 г.
В октябре 1906 г. американский инженер Ли де Форест изобрёл электронную лампу - усилитель, или аудион, как он её тогда назвал, имевший третий электрод - сетку. Им был введён принцип, на основе которого строились все дальнейшие электронные лампы, - управление током, протекающим между анодом и катодом, с помощью других вспомогательных элементов.
В 1910 г. немецкий инженеры Либен, Рейнс и Штраус сконструировали триод, сетка в котором выполнялась в форме перфорированного листа алюминия и помещалась в центре баллона, а чтобы увеличить эмиссионный ток, они предложили покрыть нить накала слоем окиси бария или кальция.
В 1911 г. американский физик Ч. Д. Кулидж предложил применить в качестве покрытия вольфрамовой нити накала окись тория - оксидный катод - и получил вольфрамовую проволоку, которая произвела переворот в ламповой промышленности.
В 1915 г. американский физик Ирвинг Ленгмюр сконструировал двухэлектронную лампу - кенотрон, применяемую в качестве выпрямительной лампы в источниках питания. В 1916 г. ламповая промышленность стала выпускать особый тип конструкции ламп - генераторные лампы с водяным охлаждением.
Идея лампы с двумя сотками - тетрода была высказана в 1919 г. немецким физиком Вальтером Шоттки и независимо от него в 1923 г. - американцем Э. У. Халлом, а реализована эта идея англичанином Х. Дж. Раундом во второй половине 20-х г.г.
В 1929 . голландские учёные Г. Хольст и Б. Теллеген создали электронную лампу с 3-мя сетками - пентод. В 1932 г. был создан гептод, в 1933 - гексод и пентагрид, в 1935 появились лампы в металлических корпусах. Дальнейшее развитие электронных ламп шло по пути улучшения их функциональных характеристик, по пути многофункционального использования. 1
В 1942 году профессор электротехнической школы Мура Пенсильванского университета Джон Маучли представил проект (меморандум) "Использование быстродействующих электронных устройств для вычислений", который положил начало созданию первой электронной вычислительной машины ENIAC (Electronic Numerical Integrator and Computer).1 Около года проект пролежал без движения, пока им не заинтересовалась Баллистическая исследовательская лаборатория армии США, В 1943 году под руководством Маучли и Эккерта были начаты работы по созданию ENIAC, А демонстрация работы машины состоялась 15 февраля 1946 года.
Одним из самых важных достижений, которые привели к революции в персональных компьютерах, было изобретение полупроводника или транзистора в 1948 году. Этот подвиг совершили инженеры фирмы Веll Laboratories Джон Бардин, Вальтер Бреттейн и Вильям Шоки.
Транзистор, который является не более чем твердотельным электронным переключателем, заменил гораздо большие по размерам электронные лампы и потреблял значительно меньше энергии, выполняя ту же работу, что и лампа. Таким образом, компьютерная система, построенная на транзисторах, была много меньше и гораздо эффективней.
Переход на транзисторы положил начало миниатюризации, которая сделала возможным появление современных портативных ПЭВМ, которые питаются от батареек, имеют большую вычислительную мощь, чем многие ранние системы, которые занимали комнаты и потребляли огромное количество энергии.2
В 1959 году инженеры фирмы Техаs Instruments поняли, как разместить несколько транзисторов на одной основе или подложке и соединить эти транзисторы без проволоки. Так родилась интегральная схема или ИС. Первая интегральная схема содержала только 6 транзисторов, а процессор Intel 80386, который используется во многих современных системах, имеет 280000 транзисторов. Современная ИС может быть создана из миллионов транзисторов.
B 1969 году фирма Intel внесла волнение в электронную индустрию, выпустив ИС с памятью 1 Кбит, которая была намного больше любой другой, имевшейся в то время. Из-за успеха этой фирмы в разработке и производстве микросхем с ней связалась японская фирма Busiсомр, производящая калькуляторы и предложила выпустить 12 микросхем для одного из своих калькуляторов. Таким первым микропроцессором был Intel 4004 четырехбитовый микропроцессор, появившийся в 1971 году. Его преемником был процессор 8008 восьмибитовый микропроцессор, появившийся в 1972 году. 1973 году были разработаны некоторые из первых комплектов микропроцессоров, основывавшихся на процессоре 8008. В конце 1973 года фирма Intel выпустила процессор 8080, который был в 10 раз быстрее, чем 8008, и мог адресовать 64К памяти. Это был один из прорывов, которого ожидали персональные компьютеры.
Фирма IВМ выпустила свой первый персональный компьютер в 1975 году. Модель 5100 имела 16 Кб( памяти, встроенный интерпретатор ВАSICa и встроенный кассетный лентопротяжный механизм, который используется в качестве запоминающего устройства. За моделью 5100 последовали модели 5110 и 5120, прежде чем фирма выпустила IВМ РС1 (который назывался моделью 5150).2
В 1976 году новая компания "Аpplе Сomputer" выпустила компьютер Аррlе 1, за компьютером Apple 1 в 1977 году последовал Арр1е 2.
В конце 1980 года маленькая группа, названная Entry Systems Division, была образована в составе фирмы IВМ. Фирма IBМ считала, что система 5100, разработанная в 1975 году, является разумным программируемым терминалом, а не настоящим компьютером, хотя она действительно была компьютером. Появление IBM PC в конце 70-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation), ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров.1
Поколения ЭВМ
В соответствии с элементной базой и уровнем развития программных средств выделяют четыре реальных поколения ЭВМ, краткая характеристика которых приведена в Приложении 1.
Первое поколение ЭВМ.
ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. В качестве внутренней памяти применялись ферритовые сердечники.
Основной недостаток этих ЭВМ – рассогласование быстродействия внутренней памяти и АЛУ и УУ за счет различной элементной базы. Общее быстродействие определялось более медленным компонентом – внутренней памятью и снижало общий эффект. Уже в ЭВМ первого поколения делались попытки ликвидировать этот недостаток путем асинхронизации работы устройств и введения буферизации вывода, когда передаваемая информация «сбрасывается» в буфер, освобождая устройство для дальнейшей работы (принцип автономии). Таким образом, для работы устройств ввода-вывода использовалась собственная память.
Существенным функциональным ограничением ЭВМ первого поколения являлась ориентация на выполнение арифметических операций. При попытках приспособления для задач анализа они оказывались неэффективными.2
Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ. Использование универсальных языков повлекло возникновение трансляторов.
Программы выполнялись позадачно, т.е. оператору надо было следить за ходом решения задачи и при достижении конца самому инициировать выполнение следующей задачи.
Начало современной эры использования ЭВМ в нашей стране относят к 1950 году, когда в институте электротехники АН УССР под руководством С.А. Лебедева была создана первая отечественная ЭВМ под названием МЭСМ – Малая Электронная Счетная Машина. В течение первого этапа развития средств вычислительной техники в нашей стране создан ряд ЭВМ: БЭСМ, Стрела, Урал, М-2.1
Второе поколение ЭВМ.
Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ.
Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода.
Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени.
Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса.1
Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО.
Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет).
К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.2
Третье поколение ЭВМ.
В 70-х годах возникают и развиваются ЭВМ третьего поколения. В нашей стране это ЕС ЭВМ, АСВТ, СМ ЭВМ. Данный этап - переход к интегральной элементной базе и создание многомашинных систем, поскольку значительного увеличения быстродействия на базе одной ЭВМ достичь уже не удавалось. Поэтому ЭВМ этого поколения создавались на основе принципа унификации, что позволило комплексировать произвольные вычислительные комплексы в различных сферах деятельности.
Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных – СУБД.
Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач. 1
Обеспечить режим разделения времени позволил новый вид ОС, поддерживающих мультипрограммирование. Мультипрограммирование - это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим). При этом каждая программа загружается в свой участок внутренней памяти, называемый разделом.
Мультипрограммирование нацелено на создание для каждого отдельного пользователя иллюзии единоличного использования вычислительной машины, поэтому эти ОС носили интерактивный характер, когда в процессе диалога с ЭВМ пользователь решал свои задачи.1
Четвертое поколение ЭВМ.
С 1980 года начался современный четвертый этап, для которого характерны переход к большим интегральным схемам, создание серий недорогих микро-ЭВМ, разработка суперЭВМ для высокопроизводительных вычислений.2
Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения. Возникают ОС, поддерживающие графический интерфейс, интеллектуальные ППП, операционные оболочки. В связи с возросшим спросом на ПО совершенствуются технологии его разработки – появляются развитые системы программирования, инструментальные среды пользователя.
В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.3 В сетевых ОС хорошо развиты средства защиты информации от несанкционированного доступа.4 Распределенные ОС обладают схожими с сетевыми системами функциями работы с файлами и другими ресурсами удаленных компьютеров, но там слабее выражены средства защиты.5
1.2 Понятие персонального компьютера
Персональный компьютер — компьютер (вычислительная машина) предназначенный для личного использования, цена, размеры и возможности которого удовлетворяют запросы большого количества людей.1
В активное употребление термин был введён в конце 1970-х годов компанией Apple Computer для своего компьютера Apple II и впоследствии перенесён на компьютеры IBM PC. Некоторое время персональным компьютером называли любую машину, использующую процессоры Intel и работающую под управлением операционных систем DOS, OS/2 и первых версий Microsoft Windows. С появлением других процессоров, поддерживающих работу перечисленных программ, таких, как AMD, Cyrix (ныне VIA), название стало иметь более широкую трактовку. Курьёзным фактом стало отрицание принадлежности к классу персональных компьютеров вычислительных машин Amiga и Macintosh, долгое время использовавших альтернативную компьютерную архитектуру.
В Советском Союзе вычислительные машины, предназначенные для личного использования, носили официальное название персональных электронных вычислительных машин (ПЭВМ). В терминологии, принятой в российских стандартах это словосочетание и сегодня указывается вместо используемого де-факто названия персона́льный компью́тер2.
По данным аналитической компании IDC, в 2005 году мировые поставки персональных компьютеров составили 202,7 млн штук (рост на 15,8 % по сравнению с 2004 годом).
В 2007 году, по данным IDC, продажи персональных компьютеров в мире составили 269 млн штук (рост по сравнению с предыдущим годом на 14,3 %). Лидером по продажам ПК стала компания Hewlett-Packard (около 18,2 % всех поставок).3
1.3 Принципы функционирования компьютера
В 1946 – 1948 годах в Принстонском университете (США) коллективом исследователей под руководством Джона фон Неймана был разработан проект ЭВМ, который никогда не был реализован, но идеи которого используются и по сей день. Этот проект получил название машины фон Неймана или Принстонской машины. В его состав входила схема и следующие принципы функционирования вычислительной машины:
1) принцип программного управления: работа ЭВМ регламентируется программой, что позволяет, вводя разные программы, решать разные задачи. Команды, из которых состоит программа, интерпретируются специально введенным в схему устройством – устройством управления. Структура отдельной команды имеет вид: <�код операции> <�операнды>, где <�код операции> определяет, какая операция должна выполняться, <�операнды> - список (возможно, одноэлементный) тех констант, адресов, имен переменных или других элементов, над которыми выполняется данная операция. В зависимости от числа операндов различают одно-, двух- и трехадресные машинные команды. Каждая команда имеет определенный объем, измеряемый байтами.
Этот принцип был самым прогрессивным среди включенных в проект, поскольку обеспечивал универсальность ЭВМ. В соответствии с принципом программного управления любая ЭВМ – это совокупность аппаратной (технической) и программной частей;
2) принцип условного перехода: команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые меняют последовательное выполнение команд в зависимости от значений данных;
3) принцип размещения программы в памяти: программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой;
4) принцип иерархии памяти: память ЭВМ не однородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия;
5) принцип двоичной системы счисления: для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически.1
Структура Принстонской машины представлена на рисунке 1.:
Рис. 1. Структура Принстонской машины
Здесь одинарные стрелки показывают управляющие связи, по которым передаются управляющие сигналы, двойные стрелки представляют информационные связи, по которым передаются данные и программы.
Рассмотрим назначение отдельных элементов этой схемы и их взаимосвязь в процессе функционирования ЭВМ.
Через устройство ввода (УВв) в память (П) вводится программа – набор команд, предписывающих ЭВМ выполнять требуемые действия (на рис. связь 1). При вводе программы (а позже и данных) выполняется отображение вводимой информации во внутреннее представление, принятое в ЭВМ.
После размещения программы в памяти устройство управления (УУ) выбирает последовательно команду за командой из памяти (связь 2) и интерпретирует ее по следующим правилам:
если выбранная команда является командой ввода данных, УУ посылает управляющий сигнал (связь 3) в УВв для начала ввода данных. Данные также вводятся по связи 1 и размещаются в памяти П;
если выбранная команда связана с выполнением арифметических или логических операций, то в память П из УУ посылается сигнал (связь 4) на выборку указанных в команде данных с последующей их пересылкой в арифметико-логическое устройство (АЛУ) (связь 5), а в само АЛУ передается сигнал с кодом нужной операции (связь 7). АЛУ выполняет арифметические и логические действия над переданными операндами. После выполнения требуемых действия, АЛУ возвращает результат в память П (связь 6);
если выбранная команда является командой вывода, УУ генерирует управляющий сигнал устройству вывода (УВыв) (связь 8) на начало операции по выводу данных. Сами данные выбираются из памяти П по связи 9.
УВыв выводит информацию из ЭВМ и преобразует ее из внутреннего представления во внешнее.
В соответствии с принципом иерархии памяти блок Память на рисунке делится на два блока – внешняя и внутренняя память. Внешняя память традиционно отводится для долговременного хранения данных и программ, а сама оперативная обработка данных в соответствии с программой, как это было рассмотрено выше, выполняется во внутренней памяти. 1
В современных компьютерах блоки УУ и АЛУ объединены в блок, называемый процессором2. В состав процессора, кроме указанных блоков, входят также несколько регистров – специальных небольших областей памяти, куда процессор помещает промежуточные результаты и некоторую другую информацию, необходимую ему в ближайшие такты работы.3
1.4 Виды и структура ПК
В современной информатике типы компьютеров различаются в зависимости от их назначения, архитектуры, размеров и функциональных возможностей.
По назначению выделяют следующие виды компьютеров:
а) универсальные - предназначены для решения различных задач, типы которые не оговариваются. Эти ЭВМ характеризуются:
разнообразием форм обрабатываемых данных (числовых, символьных и т.д.) при большом диапазоне их изменения и высокой точности представления;
большой емкостью внутренней памяти;
развитой системой организации ввода-вывода информации, обеспечивающей подключение разнообразных устройств ввода-вывода.
б) проблемно-ориентированные - служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных, выполнением расчетов по несложным правилам. Они обладают ограниченным набором аппаратных и программных средств.
в) специализированные - применяются для решения очень узкого круга задач. Это позволяет специализировать их структуру, снизить стоимость и сложность при сохранении высокой производительности и надежности. К этому классу ЭВМ относятся компьютеры, управляющие работой устройств ввода-вывода и внешней памятью в современных компьютерах. Такие устройства называются адаптерами, или контроллерами.1
По размерам и функциональным возможностям различают четыре вида компьютеров: суперЭВМ, большие, малые и микроЭВМ.2
СуперЭВМ являются мощными многопроцессорными компьютерами с огромным быстродействием. Многопроцессорность позволяет распараллеливать решение задач и увеличивает объемы памяти, что значительно убыстряет процесс решения. Они часто используются для решения экспериментальных задач, например, для проведения шахматных турниров с человеком.
Большие ЭВМ (их называют мэйнфреймами от англ. mainframe) характеризуются многопользовательским режимом (до 1000 пользователей одновременно могут решать свои задачи). Основное направление – решение научно-технических задач, работа с большими объемами данных, управление компьютерными сетями и их ресурсами.
Малые ЭВМ используются как управляющие компьютеры для контроля над технологическими процессами. Применяются также для вычислений в многопользовательских системах, в системах автоматизации проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.
По назначению микроЭВМ могут быть универсальными и специализированными. По числу пользователей, одновременно работающих за компьютером – много- и однопользовательские. Специализированные многопользовательские микроЭВМ (серверы - от англ. server) являются мощными компьютерами, используемыми в компьютерных сетях для обработки запросов всех компьютеров сети. Специализированные однопользовательские (рабочие станции – workstation, англ.) эксплуатируются в компьютерных сетях для выполнения прикладных задач. Универсальные многопользовательские микроЭВМ являются мощными компьютерами, оборудованными несколькими терминалами. Универсальные однопользовательские микроЭВМ общедоступны. К их числу относятся персональные компьютеры – ПК. Наиболее популярным представителем ПК в нашей стране является компьютер класса IBM PC (International Business Machines – Personal Computer).1
По конструктивным особенностям ПК делятся на стационарные (настольные – тип DeskTop) и переносные.2 В свою очередь переносные ПК встречаются различных типов, например, ноутбуки, органайзеры, карманные и т.д.3
Персональные компьютеры – это вид компьютеров, который относится к классу универсальных однопользовательских микроЭВМ и является наиболее распространенным на данный момент.4
Логическая схема ПК как совокупность основных составляющих его элементов показана в приложении 2.
Физическая схема ПК (основные устройства) показана в приложении 3.
|