1 1 Общие характеристики и типы пг аэс


Скачать 1.28 Mb.
Название 1 1 Общие характеристики и типы пг аэс
страница 1/7
Тип Реферат
rykovodstvo.ru > Руководство эксплуатация > Реферат
  1   2   3   4   5   6   7
Содержание

Введение

Часть 1. Технологическая часть

1.1 Общие сведения

1.1.1 Общие характеристики и типы ПГ АЭС

1.1.2 Требования к ПГ АЭС с реактором ВВЭР-1000

1.2 Прогнозирование повреждений теплообменных трубок парогенератора

1.2.1 Основные положения0

1.2.2 Выбор обобщающих параметров для описания эффектов водно-химического режима

1.2.3 Трубный пучок кипящего теплообменника

1.2.4 Пример для предлагаемой методики

1.2.5 Выводы по разделу

Часть 2. Системы теплотехнического контроля и автоматизации II-го контура АЭС с ВВЭР-1000

2.1 Оборудование и технологические системы второго контура

2.1.1 Общие сведения

2.1.2 Описание объекта управления

2.1.3 Регулирование уровня в регенеративных подогревателях

2.1.4 Автоматическое регулирование деаэраторных установок

2.1.5 Приборы и средства теплотехнического контроля параметров II го контура АЭС с ВВЭР-1000

2.1.6 Описание АСУ ТП на базе ТПТС53

2.1.7 Система автоматизации AS 220 EA

2.1.8 Область применения

2.1.9 Структура

2.1.10 Принцип работы

Часть 3. Разработка методики прогнозирования повреждений теплообменных трубок парогенератора

3.1 Основные положения

3.2 Особенности эксплуатации ТОТ парогенераторов АЭС с ВВЭР

3.2.1. Объект исследования

3.2.2. Критерии глушения ТОТ

3.2.3 Продление ресурса ТОТ парогенераторов

3.3 Методы контроля

3.3.1 Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа

3.4 Вероятностный подход к управлению сроком службы ТОТ ПГ

3.4.1 Исходные данные и алгоритм расчета

3.4.2 Сравнительный анализ вероятностных законов распределения для описания длительности безотказной работы ТОТ ПГ

3.4.3 Разработка программы прогнозирования глушения и повреждения теплообменных трубок парогенераторов АЭС

3.4.4 Обработка данных эксплуатационного контроля

3.5 Анализ расчетов для ТОТ ПГ ряда АЭС (Нововоронежской, Калининской, Балаковской)

3.6 Выводы по разделу

Часть 4. Эргономический анализ трудовой деятельности оператора АЭС

4.1 Основные положения

4.2 Структура эргономики, основные понятия эргономики

4.3 Психофизиологическая сущность и структура трудовой деятельности

4.4 Факторы деятельности, вызывающие утомление

4.4 Эргономический анализ рабочего места оператора АЭС0

4.4.1 Антропометрический анализ

4.4.2 Физиологические и психофизиологические показатели

4.4.3 Психологические показатели

4.4.4 Социально-психологические требования

4.4.5 Гигиенические требования

4.5 Выводы по разделу

Часть 5. Расчет технико-экономических показателей АЭС

5.1 Основные положения

5.2 Капитальные вложения для АЭС

5.3 Годовой расход природного ядерного горючего

5.4 Годовой расход обогащенного урана

5.5 Годовой расход природного урана

5.6 Удельный расход природного ядерного горючего на выработанные кВт∙ч электроэнергии

5.7 Годовые амортизационные отчисления

5.8 Затраты

5.8.1 Годовые затраты на ядерное горючее

5.8.2 Годовые затраты на заработную плату

5.8.3 Годовые затраты на ремонтный фонд

5.8.4 Годовые затраты на прочие расходы

5.9 Определение себестоимости одного отпущенного кВт∙ч

5.10 Годовая выработка и годовой отпуск электроэнергии

5.11 Выводы по разделу

Заключение

Список использованной литературы

Введение
Постоянный рост потребности человечества в топливе и электроэнергии, а также уменьшение природных запасов органического топлива способствует росту ядерной энергетики.

Увеличение единичной мощности реактора, унификация оборудования, совершенствование топливного цикла, частичная перегрузка топлива без остановки реактора, улучшение конструкции тепловыделяющих элементов и всей активной зоны, размещение всего радиоактивного контура в специальной камере и многие другие усовершенствования способствуют снижению стоимости электроэнергии, вырабатываемой на АЭС, повышению надежности и безопасности. Технологический процесс на АЭС определяется рядом факторов:

- необходимо координирование работы десятков основных и вспомогательных агрегатов и систем;

- ограниченная доступность ряда помещений;

- большая единичная мощность агрегатов;

- интенсификация процессов.

Современный этап развития промышленного производства характеризуется переходом к использованию передовой технологии, стремлением добиться предельно высоких эксплуатационных характеристик как действующего, так и проектируемого оборудования, необходимостью свести к минимуму любые производственные потери. Все это возможно только при условии существенного повышения качества управления промышленными объектами, в том числе путем широкого применения автоматизированных систем управления. Автоматизированная система управления технологическим процессом (АСУ ТП) - это АСУ для выработки и реализации управляющих воздействий на технологический объект управления в соответствии с принятым критерием управления.

Автоматизированной системе управления свойственны следующие признаки:

- АСУ ТП - это человеко-машинная система, в которой человек играет важнейшую роль, принимая в большинстве случаев содержательное участие в выработке решений по управлению;

- существенное место в АСУ ТП занимают автоматические устройства (в том числе вычислительная техника), выполняющие трудоемкие операции по сбору, обработке и предоставлению информации оператору-технологу;

- цель функционирования АСУ ТП - оптимизация работы объекта путем соответствующего выбора управляющих воздействий.

Кроме того, АСУ ТП осуществляет воздействие на объект в том же темпе, что и протекающие в нем технологические процессы, обеспечивает управление технологическим объектом в целом, а ее технические средства участвуют в выработке решений по управлению.

Имеющийся опыт разработки и эксплуатации автоматизированных систем показывает, что оптимальное решение вопросов автоматизации достигается только при условии рационального соотношения между уровнем автоматизации и совершенством технологического оборудования и средств автоматики. Иными словами, автоматизация целесообразна для высоконадежного технологического оборудования с применением высококачественной аппаратуры автоматики.

Все это требует автоматизации высокой степени, позволяющей небольшому количеству персонала осуществлять оптимальное управление работой АЭС.




Часть 1. Технологическая часть
1.1 Общие сведения
1.1.1 Общие характеристики и типы ПГ АЭС

Производство рабочего пара на АЭС осуществляется в специальных теплообменных установках — ПГ.

В ядерных реакторах помимо теплофизических и физико-химических процессов, свойственных обычным теплообменным установкам, протекают и нейтронно-физические процессы, обусловливающие специфичность этих агрегатов и выделяющие их в особый класс теплообменных аппаратов. Одновременное рассмотрение сочетаний реактор — ПГ и теплообменные устройства — ПГ нецелесообразно. Однако следует иметь в виду, что основные закономерности теплофизических и физико-химических процессов, протекающих при производстве пара, идентичны как для кипящих реакторов, так и для собственно ПГ. Для кипящих реакторов необходимо уточнение влияния на эти процессы весьма высоких тепловых потоков, больших скоростей теплоносителей и ионизирующего излучения.

Под ПГ АЭС понимают теплообменный аппарат, служащий для производства рабочего пара за счет тепла, вносимого в него охладителем реактора. ПГ — один из основных агрегатов двухконтурных АЭС. Однако в первый период развития ядерной энергетики он входил в состав и одноконтурных АЭС. Основные характеристики ПГ АЭС, так же как и ПГ ТЭС: паропроизводительность, параметры пара и температура питательной воды. Важным показателем является чистота пара (а для цикла с насыщенным паром — влажность). В общем случае ПГ АЭС также состоит из подогревательного (водяной экономайзер), испарительного (испаритель) и пароперегревательного (пароперегреватель) элементов. Эти элементы могут быть совмещены в одном теплообменном аппарате, а могут быть и самостоятельными теплообменниками, включенными последовательно в контуры обоих теплоносителей.

Нагреваемый теплоноситель (вода, пароводяная смесь, пар) носит название рабочего тела. Греющий теплоноситель (охладитель реактора) называют первичным теплоносителем. Движение рабочего тела в экономайзере и пароперегревателе всегда однократное и принудительное. По способу организации движения рабочего тела испарители делят на три группы: с естественной циркуляцией, с многократной принудительной циркуляцией и прямоточные. В соответствии с этим различают и типы ПГ в целом. Парогенераторы с естественной циркуляцией характеризуются многократным движением воды в испарителе за счет естественного напора, возникающего из-за разности масс столбов жидкости в опускной системе и пароводяной смеси в подъемной. Испаритель представляет собой в этом случае замкнутый контур. Парогенераторы с многократной принудительной циркуляцией также имеют многократное движение воды в замкнутом контуре испарителя вследствие напора, создаваемого циркуляционным насосом, который включен в опускную систему.

Прямоточные ПГ характеризуются включением всех элементов в одну последовательную цепь с однократным принудительным движением в них рабочей среды вследствие напора питательного насоса.

По виду первичного теплоносителя ПГ делят на две группы: с жидкими теплоносителями и с газообразными. Движение теплоносителя — принудительное. В дипломном проекте рассматриваются парогенераторы с жидкостным теплоносителем – водой.

Показатель, характеризующий тепловую экономичность ПГ — КПД. В ПГ имеет место только один вид потери тепла — в окружающую среду, но он невелик — 1—2% тепловой мощности ПГ.




1.1.2 Требования к ПГ АЭС с реактором ВВЭР-1000

Теплообменные аппараты широко применяются во многих отраслях промышленности: энергетике, химической и нефтеперерабатывающей промышленности и др.

Поэтому целесообразно рассмотреть требования, предъявляемые к ПГ АЭС.

Основные требования к ПГ АЭС.

Схема ПГ и конструкция его элементов должны обеспечить необходимую производительность и заданные параметры пара при любых режимах работы АЭС. Выполнение этого требования предусматривает наиболее экономичную работу станции как при номинальной, так и при переменных нагрузках.

Единичная мощность ПГ должна быть максимально возможной при заданных условиях. Это требование связано с улучшением технико-экономических показателей при укрупнении мощности единичного агрегата.

Рис. 1.1- Схема поверхностного рекуперативного теплообменника: 1 - корпус теплообменника; 2 - поверхность теплообмена; 3 - камеры (подводящая и отводящая один из теплоносителей); 4 - трубные доски; 5 - патрубки
3. Все элементы ПГ должны обладать безусловной надежностью и абсолютной безопасностью. Поверхность теплообмена в ПГ выполняется из большого количества труб малого диаметра, т. е. в ней сосредоточивается большое количество соединений труб первого радиоактивного контура. В связи с этим надежность работы АЭС в значительной степени определяется надежностью работы ПГ. Необходимо правильно решать вопросы радиационной защиты ПГ и обеспечивать прочность всех элементов конструкции.

Соединения элементов и деталей ПГ должны обеспечивать плотность, исключающую возможность перетечек из одного контура в другой. Сколько-нибудь существенное попадание теплоносителя в рабочее тело недопустимо, так как паротурбинный контур не имеет биологической защиты. Проникновение рабочего тела в первый контур может привести к аварийной ситуации в реакторе.

Возможность интенсификации коррозионных процессов должна быть исключена. Здесь имеется в виду как снижение надежности ПГ, так и загрязнение теплоносителя продуктами коррозии. Чрезмерное их попадание в первый контур приведет к повышению радиоактивности теплоносителя и отложению радиоактивных продуктов коррозии в первом контуре. Наиболее опасны отложения продуктов коррозии на тепловыделяющих элементах. В этом случае может произойти резкое уменьшение теплоотвода.

ПГ должен вырабатывать пар необходимой чистоты, что обеспечит надежность высокотемпературных пароперегревателей, а также надежную и экономичную работу турбины.

Конструкция элементов ПГ должна быть проста и компактна, должна обеспечивать удобство монтажа и эксплуатации, возможность обнаружения и ликвидации повреждений, возможность полного дренирования.

Поверхностные теплообменники, в свою очередь, делят на регенеративные и рекуперативные. В регенеративных теплообменниках теплоноситель и рабочее тело попеременно проходят через теплопередающую поверхность. Во время омывания поверхности теплоносителем она аккумулирует тепло, которое затем передается рабочему телу. Попеременное омывание одной и той же поверхности теплоносителем и рабочим телом, практическая невозможность достижения необходимой плотности разделений контуров приводят к попаданию одной среды в другую, что недопустимо для двухконтурных паротурбинных АЭС.

В рекуперативных теплообменниках (рисунок 1.1) обе среды одновременно омывают поверхность теплообмена, и тепло от первичного теплоносителя передается рабочему телу через разделяющую их стенку. Такой способ передачи тепла дает возможность разработать теплообменный аппарат, отвечающий всем требованиям, предъявляемым к ПГ АЭС.




1.2 Прогнозирование повреждений теплообменных трубок парогенератора




1.2.1 Основные положения

Обеспечение надежной работы теплообменных трубок (ТОТ) парогенераторов (ПГ) является важнейшей задачей для различного типа АЭС как в отечественной атомной энергетике, так и за рубежом.

Тонкостенные теплообменные трубы парогенератора являются важной частью границы первого контура и для того, чтобы исполнять функции эффективного барьера, теплообменные трубы не должны иметь сквозных дефектов или дефектов, требующих глушения ТОТ.

На ПГ российского производства повреждения теплообменного пучка имеют место в различной степени на всех блоках АЭС и являются в настоящее время основным фактором, определяющим остаточный ресурс ПГ.

Одной из важнейших в современной технике можно обоснованно полагать проблему точного знания ее состояния - остаточного и технического ресурса деградирующего металла на данный момент времени. Оценка технического и остаточного ресурсов, обоснование продления срока службы металла оборудования, в том числе – оборудования атомной энергетики, обоснование сроков снятия с эксплуатации - все это положительные производные от решения этой проблемы.

Реализация подобной задачи сопряжена как с объективными научно-техническими сложностями, так и с преодолением субъективных, исторически сложившихся подходов и путей ее решения, а именно.

Во-первых - методы вероятностного анализа не предназначены для ресурсных оценок.

Во-вторых - современные детерминированные методы могут это сделать, однако в пределах, как правило, одного повреждающего процесса.

В-третьих - в современных методах расчета на усталостную долговечность и статическую прочность все дополнительно участвующие в повреждении процессы предписано учитывать коэффициентами запаса.

В-четвертых - числовые значения упомянутых коэффициентов запаса определяются только экспертным путем, а нормативные методики их расчета отсутствуют.

В-пятых - обычно расчеты с использованием экспертных числовых значений коэффициентов удовлетворяют практику, но вместе с тем нередки случаи повреждения задолго до исчерпания назначенного ресурса оборудования, металл которого подвергался во время эксплуатации одновременному воздействию сразу нескольких повреждающих процессов.

Безусловно, важнейшее влияние на долговечность конструкционных сплавов оказывает усталость. Уже более 100 лет все конструкции из металла рассчитываются на усталостную долговечность (при условии удовлетворения требованиям статической прочности) [1]. Именно тогда были заложены так называемые коэффициенты влияния на усталостную долговечность коррозионной среды. Причем, числовое значение этого коэффициента не изменялось в течении всех этих лет ( кс=10).

Как правило, влияние рабочих сред на прочностные характеристики металла помимо упомянутых коэффициентов учитываются еще и добавкой к расчетной толщине конструкции (для компенсации убыли металла по причине равномерной коррозии - утонения). Вместе с тем, коррозионные процессы и механизмы их воздействия на служебные свойства металла гораздо разнообразнее, чем это учтено в современных расчетных методах например, коррозия: при постоянном нагружении (КПН); коррозионное растрескивание (КР): транскристаллитное - трещина через тело зерен (ТКР) и межкристаллитное - трещины по границам зерен - коррозионное (МКР) растрескивание; водородное охрупчивание (ВО); коррозионная усталость (КУ) и т.д.. Нередко последствия именно этих локальных процессов и оказывают существенное влияние на долговечность конструкционного сплава в рабочих условиях.

В последнее время появились весьма тревожные факты, свидетельствующие о том, что нельзя одним числовым коэффициентом описать все случаи взаимодействия всех типов и марок сплавов со всеми типами коррозионных сред.

Так, авария на Аляске с продуктопроводом показала, что коэффициент влияния среды может достигать 3600. Досрочная замена парогенераторов: - за рубежом из-за коррозионного растрескивания (КР) трубных пучков (около 80 единиц) и в СНГ - из-за КР коллекторов (32 единицы ) показала, что коэффициент влияния среды может составлять от 200 до 350.

Можно предположить, что одним из перспективных направлений, который приведет к решению обозначенной проблемы является создание математического аппарата, объединяющего частные аппроксимирующие детерминированные методики повреждающих процессов в единый функционал взаимного влияния всех таких процессов без исключения (или их противопоставления друг другу) так, как управление ресурсом есть не что иное, как:

Наличие феноменологического описания каждого частного процесса повреждения металла.

Выявление физически измеряемого признака повреждения металла по каждому частному процессу повреждения.

Выявление физически измеряемого значения критерия предельного состояния металла перед разрушением по каждому частному процессу повреждения.

Наличие детерминированной математической модели кинетики роста относительной меры повреждения как отношение текущего значения физически измеряемых признаков повреждения частных по отдельному частному процессу повреждения к значения критерия предельного состояния.

Наличие алгоритма вычисления общей относительной меры повреждения металла, объединяющего уравнения кинетики роста относительной меры повреждения по частным процессам повреждения.

Факторный анализ и обоснование критерия «отбраковки» - критерия, согласно которому какой либо частный процесс повреждения может быть исключен из рассмотрения.

Обоснование новых числовых характеристик конструкции, а также технологических режимов изготовления и эксплуатации для компенсации негативного воздействия на наработку до отказа отдельных факторов по критерию приращения срока безопасной эксплуатации.

Обоснование технической осуществимости и экономической целесообразности реализации компенсирующих мероприятий.

Реализация конструкторских, технологических и технических мероприятий с целью обоснования:

- срока безопасной эксплуатации металла;

- остаточного ресурса – остаточного срока безопасной эксплуатации металла;

-продолжительности безопасной эксплуатации металла сверх назначенного ресурса;

-технических мероприятий для продления безопасной эксплуатации металла сверх назначенного ресурса.

Одно из направлений исследования причин повреждений коллекторов парогенераторов типа ПГВ-1000м было сформулировано как разработка концепции «Прочность через долговечность»: металл прочен пока сохраняет сплошность, т.е. долговечен и по условиям протекания локализованных повреждающих процессов [2]. На базе математического аппарата этой концепции удалось теоретически обосновать, экспериментально проверить и реализовать на действующих, проектируемых и изготавливаемых парогенераторах новые технологические мероприятия, которые способствуют продлению ресурса коллекторов. Концепция «Прочность через долговечность» не противопоставляется концепции «Течь перед разрушением». В отличие от вероятностного анализа надежности ее математический аппарат – детерминистские уравнения полифакторных повреждающих физико-химических процессов на границе раздела «металл/коррозионная среда» и в объеме металла, одновременно воздействующих на конструкционный сплав.

Суть этого направления состоит как в использовании уже известных подходов, методик и формул расчета ресурса и долговечности, так и в создании недостающих алгоритмов.

Во-первых это:

- концепция предельного состояния металла (критерий - числовое значение физического признака повреждения металла перед его разрушением - гипотеза академика Российской Академии наук Болотина В.В., изложенная в монографии [2].

- алгоритмы расчета долговечности металла при воздействии отдельных, в том числе и полифакторных, но частных процессов повреждения металла (усталость; ползучесть; радиационная хрупкость).

Во-вторых:

- создание прикладных инженерных методик прогнозных расчетов технического τtech и остаточного τост ресурсов на основе новой и ранее неизвестной архитектуры функции долговечности при одновременном кооперативном воздействии на металл нескольких повреждающих процессов;

- разработка прикладных программных средств «РЕСУРС-К» и «РЕСУРС-Т» применительно к расчетам ресурса коллекторов и трубных пучков парогенераторов типа ПГВ-1000М АЭС на основе алгоритма, детерминированных методик и формул, учитывающих особенности конструкции, технологии изготовления, характеристик технологических режимов эксплуатации (главным образом - типы циклов нагружения по амплитудам термо- и гидро- механических напряжений, а также характеристики водно-химического режима).

При контакте подвергаемого усталости металла с коррозионной средой возникает ситуация, известная под названием «коррозионная усталость» (КУ). Это наиболее распространенный в технике пример совместного повреждающего действия на металл двух процессов усталости и коррозии, Причем, коррозии в ее глубоком понимании происходящих физико-химических процессов как на границе раздела «металл/среда», так и в объеме металла. Известно, что КУ не имеет предела выносливости [3] в отличие от усталости на воздухе (рис. 1).

Из рассмотрения рисунка 1.2 следует, что при использовании рекомендуемого в нормативных документах [4] приема – понижение в 10 раз предельного числа циклов на воздухе (для учета влияния контакта с коррозионной средой) не формируется главное отличие - сохраняется несуществующий предел выносливости (кривая 2), которого в условиях КУ на самом деле нет (кривая 3). Кроме того, известно, что кривая 3 смещается к оси ординат в более кислой среде и вправо – в более щелочной (относительно водородного показателя pH, для которого построена кривая 3).
  1   2   3   4   5   6   7

Похожие:

1 1 Общие характеристики и типы пг аэс icon Минимальный перечень документов и информации по энергоблокам аэс,...
Типы турбин(ы) и реактора, входящих в состав энергоблока, основные технические характеристики энергоблока, турбин(ы), реактора, в...
1 1 Общие характеристики и типы пг аэс icon Техническое задание на поставку заготовок ге саоз для Белорусской...
Подраздел 1 Технические, функциональные и качественные характеристики (потребительские свойства) товаров
1 1 Общие характеристики и типы пг аэс icon Техническое задание на разработку национального стандарта «Сварка...
Протокол от 27 октября 2015 года совещания под председательством директора по капитальным вложениям Госкорпорации «Росатом» Сахарова...
1 1 Общие характеристики и типы пг аэс icon Для территории Курской области характерны следующие виды опасностей
Курская аэс, расположенная в 3-х км западнее г. Курчатова. Энергетическая мощность аэс составляет 4 млн кВт. В состав аэс входит...
1 1 Общие характеристики и типы пг аэс icon Реализация процедур обеспечения радиационной безопасности в технологических...
Аэс при их выводе из эксплуатации. Представленный материал предназначен для специалистов, участвующих в разработке проектов вывода...
1 1 Общие характеристики и типы пг аэс icon Методические указания по лабораторному практикуму «птк асутп аэс»
Ознакомление с оборудованием и программным обеспечением асу тп, применяемым на современных аэс россии
1 1 Общие характеристики и типы пг аэс icon Исходные данные, переданные исх. Бал аэс от 04. 09. 2012 г. № ОябиН-1-10/2/14470
Справка по выполнению работ по "Программе подготовки энергоблока №1 Балаковской аэс к дополнительному сроку эксплуатации"
1 1 Общие характеристики и типы пг аэс icon Белорусская партия "Зеленые"
«Заявлению о возможном воздействии на окружающую среду белорусской аэс (Предварительный отчет об овос белорусской аэс)»
1 1 Общие характеристики и типы пг аэс icon Белорусская партия «Зелёные»
«Заявлению о возможном воздействии на окружающую среду белорусской аэс (Предварительный отчет об овос белорусской аэс)»
1 1 Общие характеристики и типы пг аэс icon Нововоронежская аэс-2
«Соглашение по применению системы кодирования kks в проекте Нововоронежская аэс-2 с энергоблоками №1 и №2»
1 1 Общие характеристики и типы пг аэс icon Нововоронежская аэс-2
«Соглашение по применению системы кодирования kks в проекте Нововоронежская аэс-2 с энергоблоками №1 и №2»
1 1 Общие характеристики и типы пг аэс icon Нововоронежская аэс-2
«Соглашение по применению системы кодирования kks в проекте Нововоронежская аэс-2 с энергоблоками №1 и №2»
1 1 Общие характеристики и типы пг аэс icon Нововоронежская аэс-2
«Соглашение по применению системы кодирования kks в проекте Нововоронежская аэс-2 с энергоблоками №1 и №2»
1 1 Общие характеристики и типы пг аэс icon Лекция Текст и перевод. Типы текста и особенности их перевода. Переводческий...

1 1 Общие характеристики и типы пг аэс icon Техническое задание на поставку заготовок для Белорусской аэс, блок...
Подраздел 1 Технические, функциональные и качественные характеристики (потребительские свойства) товаров
1 1 Общие характеристики и типы пг аэс icon Филиал фгуп концерн «росэнергоатом» Ленинградская аэс
В настоящее время все больше внимания уделяется вопросам повышения эффективности выработки электроэнергии на аэс. Одним из направлений...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск