2.3.Проектирование реляционных баз данных на основе принципов нормализации
2.3.1.Понятие метода нормализации отношений
При проектировании базы данных решаются две основные проблемы.
Каким образом отобразить объекты предметной области в абстрактные объекты модели данных, чтобы это отображение не противоречило семантике предметной области и было, по возможности, лучшим (эффективным, удобным и т. д.)? Часто эту проблему называют проблемой логического проектирования баз данных.
Как обеспечить эффективность выполнения запросов к базе данных, т. е. каким образом, имея в виду особенности конкретной СУБД, расположить данные во внешней памяти, создания каких дополнительных структур (например, индексов) потребовать и т. д.? Эту проблему обычно называют проблемой физического проектирования баз данных.
В случае реляционных баз данных трудно предложить какие-либо общие рецепты по части физического проектирования. Здесь слишком многое зависит от используемой СУБД. Поэтому мы ограничимся вопросами логического проектирования реляционных баз данных, которые существенны при использовании любой реляционной СУБД.
В этом и следующих разделах будет рассмотрен классический подход, при котором весь процесс проектирования базы данных осуществляется в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих «улучшенными» свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами, в некотором смысле, лучшими, чем предыдущая.
Каждой нормальной форме соответствует определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером может служить ограничение первой нормальной формы – значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию.
В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм:
первая нормальная форма (1NF);
вторая нормальная форма (2NF);
третья нормальная форма (3NF);
нормальная форма Бойса-Кодда (BCNF);
четвертая нормальная форма (4NF);
пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF).
Основные свойства нормальных форм состоят в следующем:
каждая следующая нормальная форма в некотором смысле лучше предыдущей нормальной формы;
при переходе к следующей нормальной форме свойства предыдущих нормальных форм сохраняются.
В основе процесса проектирования лежит метод нормализации, т. е. декомпозиции отношения, находящегося в предыдущей нормальной форме, на два или более отношений, которые удовлетворяют требованиям следующей нормальной формы.
В этой лекции мы обсудим первые шаги процесса нормализации, в которых учитываются функциональные зависимости между атрибутами отношений. Хотя мы и называем эти шаги первыми, именно они имеют основную практическую важность, поскольку позволяют получить схему реляционной базы данных, в большинстве случаев удовлетворяющую потребности приложений.
2.3.2.Декомпозиция без потерь и функциональные зависимости
Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Для дальнейшего изложения нам потребуются несколько определений. (Заметим, что везде ниже под термином "атрибут X (Y, Z, ...)", вообще говоря, понимается некоторое подмножество атрибутов отношения, или "составной" атрибут.)
Определение: Функциональная зависимость
В отношении r атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: r.X r.Y.
Определение: Минимальная (полная) функциональная зависимость
Функциональная зависимость r.X r.Y называется минимальной (или полной), если атрибут Y не зависит функционально от любого точного подмножества X.
Определение: Транзитивная функциональная зависимость
Функциональная зависимость r.X r.Y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости r.X r.Z и r.Z r.Y и отсутствует функциональная зависимость r.Z r.X. (При отсутствии последнего требования мы имели бы "неинтересные" транзитивные зависимости в любом отношении, обладающем несколькими ключами.)
Определение: Неключевой атрибут
Неключевым атрибутом называется любой атрибут отношения, не входящий в состав ключа (в частности, первичного).
Определение: Взаимно независимые атрибуты
Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других.
Дальнейшие понятия и определения (в том числе определение многозначной зависимости и зависимости соединения) будут вводиться по ходу изложения в следующем подразделе.
Как уже отмечалось ранее, в данном разделе рассматривается подход к проектированию реляционных баз данных на основе нормализации, т. е. декомпозиции (разбиения путем проецирования) отношения, находящегося в предыдущей нормальной форме, на два или более отношений, удовлетворяющих требованиям следующей нормальной формы.
Считаются правильными такие декомпозиции отношения, которые обратимы, т. е. имеется возможность собрать исходное отношение из декомпозированных отношений без потери информации. Такие декомпозиции называются декомпозициями без потерь.
Корректные и некорректные декомпозиции отношений. Теорема Хеза
На Рис. 6. приведены две возможные декомпозиции отношения СЛУЖАЩИЕ_ПРОЕКТЫ
Рис. 6. Две возможные декомпозиции отношения СЛУЖАЩИЕ_ПРОЕКТЫ
Анализ Рис. 6. показывает, что в случае декомпозиции (1) мы не потеряли информацию о служащих – про каждого из них можно узнать имя, размер зарплаты, номер выполняемого проекта и имя руководителя проекта. Вторая декомпозиция не дает возможности получить данные о проекте служащего, поскольку Иванов и Иваненко получают одинаковую зарплату, следовательно, эта декомпозиция приводит к потере информации. Что же привело к тому, что одна декомпозиция является декомпозицией без потерь, а вторая – нет?
Заметим, что при проведении декомпозиции мы использовали операцию взятия проекции. Каждое из отношений СЛУЖ, СЛУ_ПРО и ЗАРП_ПРО является проекцией исходного отношения СЛУЖАЩИЕ_ПРОЕКТЫ. В случае декомпозиции (1) отсутствие потери информации означает, что в результате естественного соединения отношений СЛУЖ и СЛУ_ПРО мы гарантированно получим отношение, заголовок и тело которого совпадают с заголовком и телом отношения СЛУЖАЩИЕ_ПРОЕКТЫ. Следует отметить, что это произойдет для любых допустимых (и согласованных) значений переменных отношений СЛУЖАЩИЕ_ПРОЕКТЫ, СЛУЖ и СЛУ_ПРО, поскольку у всех этих переменных атрибут СЛУ_НОМ является возможным ключом. Однако если выполнить естественное соединение отношений СЛУ и ЗАРП_ПРО, то будет получено отношение, показанное на Рис. 7.
Схема этого отношения, естественно (поскольку соединение – естественное), совпадает со схемой отношения СЛУЖАЩИЕ_ПРОЕКТЫ, но в теле появились лишние кортежи, наличие которых и приводит к утрате исходной информации. Интуитивно понятно, что это происходит потому, что в отношении ЗАРП_ПРО отсутствуют функциональные зависимости СЛУ_ЗАРППРО_НОМ и СЛУ_ЗАРППРОЕКТ_РУК, но точнее причину потери информации в данном случае мы объясним несколько позже.
Корректность же декомпозиции 1 следует из теоремы Хеза:
Теорема Хеза.
Пусть задано отношение r {A, B, C} (A, B и C, в общем случае, являются составными атрибутами) и выполняется FD AB.
Рис. 7. Результат естественного соединения отношений СЛУЖ и ЗАРП_ПРО
Тогда r = (r PROJECT {A, B}) NATURAL JOIN (r PROJECT {A, C}).
Для иллюстрации общего случая применения теоремы Хеза рассмотрим отношение СЛУЖАЩИЕ_ОТДЕЛЫ_ПРОЕКТЫ {СЛУ_НОМ, СЛУ_ОТД, ПРО_НОМ} (Рис. 8). Атрибут СЛУ_ОТД содержит номера отделов, в которых работают служащие, а ПРО_НОМ – номера проектов, в которых служащие принимают участие. Каждый служащий работает только в одном отделе, т. е. имеется FD СЛУ_НОМСЛУ_ОТД, но один служащий может участвовать в нескольких проектах.
Рис. 8. Декомпозиция без потерь по теореме Хеза
В отношении СЛУЖАЩИЕ_ОТДЕЛЫ_ПРОЕКТЫ атрибут СЛУ_НОМ не является возможным ключом, но, как показано на Рис. 8, наличия FD СЛУ_НОМСЛУ_ОТД оказывается достаточно для декомпозиции этого отношения без потерь.
|