А. Д. Чередов организация ЭВМ и систем


Скачать 2.42 Mb.
Название А. Д. Чередов организация ЭВМ и систем
страница 3/28
Тип Учебное пособие
rykovodstvo.ru > Руководство эксплуатация > Учебное пособие
1   2   3   4   5   6   7   8   9   ...   28

1.2. Технические и эксплуатационные характеристики ЭВМ


Производительность компьютера

Основным техническим параметром ЭВМ является её производительность. Этот показатель определяется архитектурой процессора, иерархией внутренней и внешней памяти, пропускной способностью системного интерфейса, системой прерывания, набором периферийных устройств в конкретной конфигурации, совершенством ОС и т.д.

Различают следующие виды производительности:

  • пиковая (предельная) – это производительность процессора без учета времени обращения к оперативной памяти (ОП) за операндами;

  • номинальная – производительность процессора с ОП;

  • системная – производительность базовых технических и программных средств, входящих в комплект поставки ЭВМ;

  • эксплуатационная – производительность на реальной рабочей нагрузке, формируемой в основном используемыми пакетами прикладных программ общего назначения.

Методы определения производительности разделяются на три основных группы:

  • расчетные, основанные на информации, получаемой теоретическим или эмпирическим путем;

  • экспериментальные, основанные на информации, получаемой с использованием аппаратно-программных измерительных средств;

  • имитационные, основанные на моделировании и применяемые для сложных ЭВМ.

Основные единицы оценки производительности:

  • абсолютная, определяемая количеством элементарных работ, выполняемых в единицу времени;

  • относительная, определяемая для оцениваемой ЭВМ относительно базовой в виде индекса производительности.

Для каждого вида производительности применяются следующие традиционные методы их определения.

Пиковая производительность (быстродействие) определяется средним числом команд типа «регистр–регистр», выполняемых в одну секунду, без учета их статистического веса в выбранном классе задач.

Номинальная производительность (быстродействие) определяется средним числом команд, выполняемых подсистемой «процессор–память» с учетом их статистического веса в выбранном классе задач. Она рассчитывается, как правило, по формулам и специальным методикам, предложенным для процессоров определенных архитектур, и измеряется с помощью разработанных для них измерительных программ, реализующих соответствующую эталонную нагрузку.

Для данных типов производительностей используются следующие единицы измерения:

  • MIPS (Mega Instruction Per Second) – миллион команд в секунду;

  • MFLOPS (Mega Floating Operations Per Second) – миллион операций над числами с плавающей запятой в секунду;

  • GFLOPS (Giga Floating Operations Per Second) – миллиард операций над числами с плавающей запятой в секунду;

  • TFLOPS (Tera Floating Operations Per Second) – триллион операций над числами с плавающей запятой в секунду;

  • PFLOPS (Peta Floating Operations Per Second) – квадриллион операций над числами с плавающей запятой в секунду.

Системная производительность измеряется с помощью синтезированных типовых (тестовых) оценочных программ, реализованных на унифицированных языках высокого уровня. Унифицированные тестовые программы используют типичные алгоритмические действия, характерные для реальных применений, и штатные компиляторы ЭВМ. Они рассчитаны на использование базовых технических средств и позволяют измерять производительность для расширенных конфигураций технических средств. Результаты оценки системной производительности ЭВМ конкретной архитектуры приводятся относительно базового образца, в качестве которого используются ЭВМ, являющиеся промышленными стандартами систем ЭВМ различной архитектуры. Результаты оформляются в виде сравнительных таблиц, двумерных графиков
и трехмерных изображений.

Эксплуатационная производительность оценивается на основании использования данных о реальной рабочей нагрузке и функционировании ЭВМ при выполнении типовых производственных нагрузок в основных областях применения. Расчеты делаются главным образом на уровне типовых пакетов прикладных программ текстообработки, систем управления базами данных, пакетов автоматизации проектирования, графических пакетов и т.д.

Была создана целая процедура тестирования True Performance Initiative (процедура измерения реальной производительности – TPI). Методика TPI состоит в измерении эксплуатационной производительности в трех разделах: Productivity – программные приложения; Visual Computing – компьютерная визуализация; Gaming – компьютерные игры.

Для первого раздела используются тесты: Sysmark2007, Mathematica 6, 3ds Max 9 (SPECapc) и др.; для второго – Photoshop CS 3, After Effects CS3, Win RAR 3.7; для третьего – 3DMark2006, Quake 4 и др.
Энергоэффективность процессора

В последнее время при сравнении процессоров пользуются отношением производительности к энергопотреблению, которое получило название энергоэффективность процессора. Разработчики процессоров предложили оценивать производительность (Р) как произведение тактовой (рабочей) частоты процессора (f) на величину k, определяющую количество инструкций, исполняемых процессором за один такт:

P = f · k.

Получается, что увеличить производительность можно, поднимая частоту и/или увеличивая количество инструкций, выполняемых за один такт. Первый подход ведет к увеличению энергопотребления,
а второй требует использования определенной микроархитектуры процессора (многоядерной), в которой заложены различные технологии, направленные на повышение количества инструкций, выполняемых процессором за один такт.

Что касается энергопотребления (W), то оно вычисляется как произведение тактовой частоты (f) процессора на квадрат напряжения U, при котором функционирует процессорное ядро, и некоторую величину Cd (динамическая емкость), определяемую микроархитектурой процессора и зависящую от количества транзисторов в кристалле и их активности во время работы процессора:

W = f · U2 · Cd.

Из приведенных формул вытекает следующее соотношение, определяющее энергоэффективность процессора:

P/W = k / (U2 · Cd).

Из формулы следует, что для получения наилучшего показателя разработчикам необходимо работать над оптимизацией микроархитектуры с целью улучшения функциональности исполнительных блоков, при этом не допуская чрезмерного увеличения динамической емкости. Что касается тактовой частоты, то, как показывают приведенные выкладки, на рассматриваемое соотношение она вообще не влияет. Напряжение питания ядра зависит не столько от микроархитектуры, сколько от технологических особенностей изготовления процессора.

Любой современный кристалл процессора состоит из огромного количества транзисторов, исчисляемого миллионами, необходимого для достижения высокой производительности процессора. Уменьшение размеров транзистора ведет к уменьшению напряжения питания, что, в свою очередь, снижает энергопотребление, к увеличению скорости работы и плотности размещения транзисторов на кристалле. Поэтому со времени создания первой интегральной микросхемы в 1959 г. развитие микроэлектроники идет по направлению уменьшения размеров транзисторов и одновременного увеличения плотности их размещения на кристалле. Для оценки этих параметров была введена специальная характеристика «Норма технологического процесса производства полупроводниковых кристаллов», измеряемая в нанометрах (нм). В недалеком прошлом (конец 90-х гг.) кристаллы процессоров изготавливались по 130 нм нормам, затем по 90 нм, 65 нм нормам, с 2007 г. используются 45 нм, а с 2009 г. – 32 нм нормы технологического процесса. Спроектированный в Intel по 45 нм нормам транзистор примерно на 20 % опережает своего 65 нм собрата по скоростным характеристикам и оказывается примерно на 30 % экономичнее с точки зрения затрат энергии на переключение.

Часто вместо характеристики энергопотребление используют характеристику рассеиваемая тепловая мощность процессора. Для этого используется специальный термин TDP, который расшифровывается как термопакет (thermal design package) – это величина, показывающая, на отвод какой тепловой мощности должна быть рассчитана система охлаждения процессора.

Как правило, TDP показывает не максимальное теоретическое тепловыделение процессора, а типичное тепловыделение в реальных приложениях. Иногда, при длительных нагрузках на процессор (например, при кодировании видео), температура процессора может превысить заданный TDP. В этих случаях современные процессоры или дают сигнал выключения компьютера, или переходят в так называемый режим троттлинга (trottling), когда процессор пропускает часть циклов.

К другим технико-эксплуатационным характеристикам ЭВМ относятся:

  • разрядность обрабатываемых слов и кодовых шин интерфейса;

  • типы системного и локального интерфейсов;

  • тип и емкость оперативной памяти;

  • тип и емкость накопителя на жестком магнитном диске;

  • тип и емкость кэш-памяти;

  • тип видеоадаптера и видеомонитора;

  • наличие средств для работы в компьютерной сети;

  • наличие и тип программного обеспечения;

  • надежность ЭВМ;

  • стоимость;

  • габариты и масса.
1   2   3   4   5   6   7   8   9   ...   28

Похожие:

А. Д. Чередов организация ЭВМ и систем icon Тема Основные возможности компьютеров
Эвм приводят к сглаживанию различий между этими классами ЭВМ. Поэтому наиболее существенным признаком классификации ЭВМ является...
А. Д. Чередов организация ЭВМ и систем icon Программа по дисциплине «Архитектура ЭВМ и систем»
Учебная программа по дисциплине «Архитектура ЭВМ и систем» составлена в соответствии с требованиями гос впо. Предназначена для студентов...
А. Д. Чередов организация ЭВМ и систем icon Конспект лекций
Архитектурная организация процессора ЭВМ. Структура машинной команды. Способы адресации. Особенности архитектур микропроцессоров....
А. Д. Чередов организация ЭВМ и систем icon Техника управления очередями
Эвм для ведения своих личных или профессиональных дел. Эта тенденция ускоряется по мере того, как все большее число организаций и...
А. Д. Чередов организация ЭВМ и систем icon В 2006 году автором было издано учебное пособие «Периферийные устройства...
Пу в вычислительных системах; 2 организации обмена данными в эвм; 3 назначения, принцип действия, структуры и программирования последовательного...
А. Д. Чередов организация ЭВМ и систем icon Обучающая программа по дисциплине Организация ЭВМ и систем содержание
В авм для решения такого рода уравнений обычно используются электрические процессы, которые описываются (моделируются) такого же...
А. Д. Чередов организация ЭВМ и систем icon Управление звуковой картой компьютера
Взаимодействие человека с ЭВМ должно быть прежде всего взаимным ( на то оно и общение ). Взаимность, в свою очередь, предуcматривает...
А. Д. Чередов организация ЭВМ и систем icon Методические указания по выполнению лабораторной работы «Технология...
Технология cuda разработана компанией Nvidia. Фактически cuda позволяет включать в текст Си программы специальные функции. Эти функции...
А. Д. Чередов организация ЭВМ и систем icon Инструкция №7 по охране труда для пользователей и операторов ЭВМ
К работам с персональными ЭВМ и внешними устройствами ЭВМ допускаются лица, прошедшие медицинское освидетельствование, вводный инструктаж,...
А. Д. Чередов организация ЭВМ и систем icon Инструкция №8 по охране труда для пользователей и операторов ЭВМ
К работам с персональными ЭВМ и внешними устройствами ЭВМ допускаются лица, прошедшие медицинское освидетельствование, вводный инструктаж,...
А. Д. Чередов организация ЭВМ и систем icon Рограммирование на языке ассемблера и организация машины перевод...
С38 Мини-эвм pdp-11: Программирование на языке ассемблера и организация машины: Пер с англ.— M.: Мир, 1984.—272 с., ил
А. Д. Чередов организация ЭВМ и систем icon Методические указания к расчетно-графическим заданиям по учебной...
Целью ргз является закрепление и лучшее усвоение теоретического материала. Предлагаемые задания направлены на выявление архитектурных...
А. Д. Чередов организация ЭВМ и систем icon Рабочая программа профессионального модуля пм. 02
ПМ. 02. «Организация работ по монтажу, ремонту и наладке систем автоматизации, средств измерений и мехатронных систем»
А. Д. Чередов организация ЭВМ и систем icon М. В. Матвеичев Печатается по решению редакционно-издательского совета Муромского института
Персональные ЭВМ и Спец. Эвм / Сост.: М. Н. Кулигин – Муром: Изд полиграфический центр ми влГУ, 20011.– … с. Библиогр.: 19 назв
А. Д. Чередов организация ЭВМ и систем icon Некоммерческое партнерство «саморегулируемая организация «союз инженерных...
Правила устройства систем противообледенения кровель, водосточных и дренажных систем зданий, пандусов, площадок
А. Д. Чередов организация ЭВМ и систем icon На разработку программы для ЭВМ «Система расщепления платежей (срп)» утверждено
Перечень документов, регламентирующих создание и функционирование Программы для ЭВМ 9

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск