Скачать 1.92 Mb.
|
ТЕМА 4. Память (3 час.) Цели и задачи: Изучить составные части памяти. Рассмотреть запоминающие устройства (внутренние регистры процессора и т.д.) Учебные вопросы: Специфика регистровой памяти, КЕШ первого уровня. Учебная информация: Память является важнейшим ресурсом любой вычислительной системы. Логически всю память ВС можно представить в виде последовательности ячеек, каждая из которых имеет свой номер, называемый адресом. Иерархия памяти, КЭШ-память Память вычислительной системы представляет собой иерархию запоминающих устройств (внутренние регистры процессора, различные типы сверхоперативной и оперативной памяти, диски, ленты), отличающихся объемом, средним временем доступа и стоимостью хранения данных в расчете на один бит. Например: Регистровая память – емкость 64-256 слов, время доступа – 1такт процессора. КЭШ первого уровня или внутренний КЭШ – емкость 8k слов, время доступа – 1-2 такта процессора. КЭШ второго уровня или внешний КЭШ – емкость 256k слов, время доступа – 3-5 тактов процессора. ОЗУ – емкость до 4Г слов, время доступа – 12-55 тактов процессора, Внешняя память – емкость до 200Г, время доступа значительно ниже. Таким образом, в основе иерархии памяти современных вычислительных систем лежит принцип «стоимость/производительность», т.е. с увеличением производительности возрастает и стоимость памяти, при этом пользователь всегда стремится иметь недорогую и быструю память. Кэш-память представляет некоторое решение этой проблемы. Кэш-память – это способ организации совместного функционирования двух типов ЗУ, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ. Кэш-памятью часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств – «быстрое» ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем. Важно, что механизм кэш-памяти является прозрачным для пользователя, который не должен сообщать никакой информации об интенсивности использования данных и не должен никак участвовать в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами. Таким образом, иерархия памяти вычислительной системы может быть схематично изображена. В системах, оснащенных кэш-памятью, каждый запрос к «медленному» ЗУ выполняется в соответствии со следующим алгоритмом: Просматривается содержимое кэш-памяти с целью определения, не находятся ли нужные данные в ней; Если данные обнаруживаются в кэш-памяти, то они считываются из нее, и результат передается в процессор в более «быстрое» ЗУ Если нужных данных нет, то они копируются из «медленного» ЗУ в кэш-память, и результат выполнения запроса передается в «быстрое» ЗУ. При копировании данных может оказаться, что в кэш-памяти нет свободного места, тогда выбираются данные, к которым в последний период было меньше всего обращений, для вытеснения из кэш-памяти. Если вытесняемые данные были модифицированы за время нахождения в кэш-памяти, то они переписываются в оперативную память. Если же эти данные не были модифицированы, то их место в кэш-памяти объявляется свободным. На практике в кэш-память считывается не один элемент данных, к которому произошло обращение, а целый блок данных, это увеличивает вероятность так называемого «попадания в кэш», то есть нахождения нужных данных в кэш-памяти. Принцип действия кэш-памяти основан на наличии у данных объективных свойств: пространственной и временной локальности. Пространственная локальность состоит в следующем – если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам. Временная локальность состоит в следующем – если произошло обращение по некоторому адресу, то следующее обращение по этому же адресу с большой вероятностью произойдет в ближайшее время. Виртуальная память Достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, называемые оверлеями. 0-ой оверлей начинал выполняться первым. Когда он заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы. Однако разбиение программы на части и планирование их загрузки в оперативную память должен был осуществлять программист. Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Таким образом, виртуальная память – это совокупность программно-аппаратных средств, позволяющих использовать ОП, размер которой превосходит реально имеющуюся в системе ОП. Для организации виртуальной памяти вычислительная система должна решать следующие задачи: размещение данных в ЗУ разного типа, например, часть ОП, а часть на диске; перемещение по мере необходимости данные между ЗУ разного типа, например, подгрузка нужной части программы с диска в ОП; преобразование виртуальных адресов в физические. Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю. Физическая организация памяти Физически память делится на внутреннюю и внешнюю. Внутренняя память выполняется, чаще всего, в виде микросхем высокой степени интеграции. Внутренняя или основная память может быть двух типов: оперативное запоминающее устройство (ОЗУ или RAM, Random Access Memory) или ЗУ с произвольной выборкой (ЗУПВ) и постоянное ЗУ (ПЗУ или ROM, Read Only Memory). В последнее время широкое распространение получила флэш (Flash)-память, имеющая особенности, как ОЗУ, так и ПЗУ. ОЗУ является энергозависимой памятью, поскольку вся содержащаяся в ней информация теряется при выключении питания и предназначена для временного хранения программ и данных. ПЗУ является энергонезависимой памятью, т.е. информация сохраняется и при выключении питания системы. ПЗУ предназначена для хранения управляющих работой ЭВМ стандартных программ (например, отвечающие за процедуру старта системы), констант, таблицы символов и т.д. ПЗУ могут быть: масочными - запрограммированными на заводе изготовителе (ROM), однократно-программируемыми пользователем ППЗУ (PROM или OTP), многократно-программируемыми (репрограммируемыми) пользователем РПЗУ с ультрафиолетовым стиранием (EPROM) или с электрическим стиранием (EEPROM, Flash). Широкое распространение нашли также программируемые логические матрицы и устройства (PLM, PML, PLA, PAL, PLD, FPGA и т.д.) с большим выбором логических элементов и устройств на одном кристалле. ОЗУ подразделяются на статическую память (SRAM), динамическую (DRAM, здесь для хранения информации необходима ее регенерация) и регистровую (RG). В качестве оперативной памяти современные ЭВМ оснащаются модулями SIMM, DIMM, DDR и RIM, которые является динамической памятью. Указанные модули памяти представляют собой небольшие платы с установленными на ней совместимыми чипами SDRAM (Sychronous DRAM – это новая технология микросхем динамической памяти. Основное отличие данного типа памяти от остальных заключается в том, что все операции синхронизированы с тактовой частотой процессора, то есть память и CPU работают синхронно. Технология SDRAM позволяет сократить время, затрачиваемое на выполнение команд и передачу данных, за счет исключения циклов ожидания). Модуль SIMM (Single In-line Memory Modyle) – 72-контактные модули, обычно оборудованные микросхемами памяти общей емкостью 8, 16 и 32 Мб. Модуль DIMM (Dual In-line Memory Modyle) – 168-контактные модули памяти. DIMM обладают внутренней архитектурой, схожей с 72-контактными модулями SIMM, но благодаря более широкой шине обеспечивают повышенную производительность подсистемы «ЦП – ОП». Модуль DDR – имею аналогичную DIMM архитектуру, а двукратный выигрыш в быстродействии осуществляется за возможности передачи двух порций данных за один такт синхронизации – по фронту и спаду импульса. Одной из наиболее быстродействующих является память RDRAM (Rambus RAM), разработанная американской компанией Rambus. Память RDRAM является 16-разрядной, тактируется частотой 400 МГц (результирующая частота за счет использования технологии DDR составляет 800 МГц) и достигает пиковой скорости передачи данных 1.6 Гбайт/с. Использование узкой шины данных и сверхвысокой частоты значительно повышают эффективность использования и загрузку канала, максимально освобождая протокол от временных задержек. Внешняя память Внешней называют память на магнитных (жесткие и гибкие диски), оптических носителях (CD-ROM) и т.п. Кроме того существует и накопители на магнитной ленте, которые в настоящее время практически не используются и поэтому в данной главе не рассматриваются. Дисковые накопители в зависимости от среды носителя и по применяемому методу записи (чтения) данных на (с) поверхность (и) могут подразделяться на магнитные, оптические и магнитооптические. Дисковая память Носителями информации являются поверхности гибких и жестких дисков, в качестве немагнитных основ которых используются соответственно майлар (как и в магнитных лентах) и алюминиевые (в ряде случаев стеклянные) круги (диски). Стеклянные диски являются менее критичными к температурным изменениям и позволяют увеличить плотность записи информации. В настоящее время наиболее широкое распространение получили диски с напыленным магнитным слоем, а точнее, с металлической пленкой (например, кобальт). Перед осуществлением записи на магнитный диск он должен быть специальным образом инициализирован – отформатирован. В результате форматирования на поверхности образуются концентрические окружности (синхронизирующие метки диска), называемые дорожками (track). Количество дорожек зависит от типа диска. Дорожки разбиваются на участки фиксированной длины, называемые секторами. Количество секторов на дорожке определяется типом и форматом диска, и они в основном одинаковы для всех дорожек. IBM PC-совместимые ПК могут работать с несколькими размерами секторов от 128 до 1024 байт. Стандартным сектором считается сектор из 512 байт. Данные любого размера (разрядности) размещаются в секторах с фиксированным размером, а дисковые операции записи и считывания производятся с целыми секторами. Дорожки и сектора нумеруются с нуля, начиная с внешнего края диска, при этом сектор с нулевым номером на каждой дорожке резервируется для системных целей. Диски имеют две стороны. Так как накопители на жестких дисках могут состоять из нескольких дисков (стопка), то совокупность всех дорожек, по одной на каждой стороне с одинаковыми номерами, образует цилиндр с номером соответствующей дорожки. Память на гибких магнитных дисках Все НГМД, применяемые в PC, независимо от типа и размера имеют одинаковый интерфейс и унифицированные разъемы. Используемый в PC кабель-шлейф имеет перевернутый фрагмент из 7 проводов с номерами 10-16. Этот поворот позволяет подключать к контроллеру одним шлейфом до двух НГМД, причем адрес накопителя определяется его положением на шлейфе: для привода А: фрагмент перевернут, для В: – нет. Контроллер накопителей на гибких дисках FDC (Floppy Drive Controller) является всегда внешним по отношению к накопителю и обычно располагается на одной плате с контроллером или адаптером жестких дисков. Контроллер FDC XT поддерживает до четырех накопителей (FDD), хотя многие контроллеры имеют интерфейсные схемы только для одного шлейфа, то есть для двух накопителей. Эти контроллеры обеспечивают скорость передачи данных 250 и 300 Кбит/с. Контроллер FDC AT поддерживает только два накопителя, но обеспечивает более высокую скорость 500 Кбит/с. Современные контроллеры обеспечиваю скорость 1000 Кбит/с. В карте ресурсов AT имеется место под два контроллера НГМД. Контроллеры вырабатывают запрос аппаратного прерывания IRQ6 (BIOS INT OEh) по окончании выполнения внутренних операций. Для обмена данными может использоваться канал DMA2. Память на жестких магнитных дисках В отличие от накопителей на гибких дисках и их контроллеров, жестко стандартизованных и поэтому легко конфигурируемых, в PC применяется множество типов накопителей на жестких дисках, их интерфейсов и контроллеров, различающихся и способами конфигурирования. Накопители на жестких магнитных дисках НЖМД (HDD), появились с машинами PC/XT. Первые накопители имели интерфейс, являющийся расширением интерфейса НГМД, и подключались к специальной плате контроллера с модулем дополнительной BIOS, хранящей всю информацию об установленных жестких дисках. В машинах класса AT поддержку стандартного контроллера включили в системную BIOS, параметры используемых жестких дисков стали хранить в памяти CMOS. Традиционные версии BIOS поддерживают до двух накопителей на жестких дисках и хранят их параметры в ячейках памяти CMOS. Расширенные версии BIOS для современных двухканальных контроллеров АТА поддерживают 4 жестких диска и хранят их параметры. Для дисков ATA используются следующие режимы адресации: CHS (целиндр-головка-сектор, традиционная трехмерная адресация данных на диске); ECHS (расширенная трехмерная адресация); LBA (линейная адресация данных на диске через логический адрес блока). Учитывая, что в соответствии с форматом вызова функций дискового сервиса, одно устройство может иметь 210=1024 цилиндра, 28=256 головок, 26-1=63 сектора. Таким образом, при трехмерной адресации (CHS) и размере сектора в 512 байт максимальный объем диска не может превышать 7.875 Гбайт. HDDmax(CHS) = [210 * 28 * (26-1)] * 512 = 136 902 082 560 байт = 7.875Gb (~8,4ГБ) Все современные винчестеры используют LBA-адресацию. В режиме LBA параметры стандартных вызовов транслируются в т.н. линейный адрес, который вычисляется однозначно в «естественном» порядке счета секторов, т.е. сектору с нулевым лог. адресом соответствует первый сектор нулевой головки нулевого цилиндра. В этом случае номер каждого сектора представляет собой 28-битное число и максимальным диском для LBA будет: HDDmax(LBA) = 228 * 512 = 137.4Gb (128ГБ) В тоже время большинство ПО использует CHS-адресацию. Поэтому с появлением HDD с LBA адресацией, чтоб не модернизировать имеющееся ПО, поступили следующим образом. BIOS в случае определения LBA-винчестера, переводит его параметры в CHS-версию и ОС работает с ним с CHS-винчестером. Т.е. 28-битное значение адреса LBA «раскладывается» следующим образом: 16 бит – цилиндр, 8 бит – сектор, 4 бита – головка. В результате, при получении запроса на работу с диском, BIOS переводит для контроллера это значение LBA-адрес : В общем виде формулы вычисления такого адреса имеет вид: LBA=(CYL*HDS*HD)*SPT+SEC-1 CYL – номер цилиндра HD – номер головки HDS – количество головок SPT – количество секторов на треке SEC – номер сектора Для накопителей на жестких дисках используют интерфейсы ST-506/412, ESDI, АТА (неофициальное название IDE), SCSI. Накопители и контроллеры с интерфейсами ST-506/412 и ESDI практически не используются. В настоящее время широко используются перечисленные ниже интерфейсы. АТА-2 — расширенная спецификация ATA, включает 2 канала, 4 устройства, PIO Mode 3 (программированный ввод-вывод), DMA mode 1 , Block mode (пакетный обмен), объем диска до 8 Гбайт, поддержка LBA и CHS адресации. Fast АТА-2 разрешает использовать DMA Mode 2 (13,3 Мбайт/с), PIO Mode 4. ATA-3 — расширение, направленное на повышение надежности. Включает средства парольной защиты, улучшенного управления питанием, самотестирования с предупреждением приближения отказа — SMART (Self Monitoring Analysis and Report Technology). Ultra DMA/33 — версия ATA/IDE со скоростью обмена по шине 33 Мбайт/с. Устройства ATA IDE, E-IDE, АТА-2, Fast АТА-2, ATA-3 и Ultra DMA/33 электрически совместимы. Последние достижения в этой области – интерфейсы Ultra ATA/66, Ultra ATA/100 и Ultra ATA/133 позволяющие осуществлять передачу данных со скоростью 66Мбай/сек, 100 Мбай/сек и 133 Мбай/сек соответственно. Возможно также подключение дисковых устройств и к параллельному порту, но через устройство, обеспечивающее один из вышеперечисленных интерфейсов. О дисках с интерфейсом USB говорить пока рано, а интерфейс FireWire является родственником SCSI-3. Кэширование диска Время доступа к различным блокам информации на HDD является переменной величиной, складывающейся из временами подвода магнитной головки (МГ) к искомой дорожке, времени успокоения вибрации МГ и времени подвода искомого сектора под МГ. Кэш или буфер HDD необходим, чтоб по возможности сократить время доступа к диску за счет, во первых, предварительной выборки данных, и во-вторых, за счет организации поблочного доступа. Для организации буфера используются два вида кэш-памяти аппаратная и программная. Аппаратная кэш-память представляет собой значительный объем памяти и имеет архитектуру полного ассоциативного отображения. Она строится на плате кэш-контроллера HDD с использованием модулей высокопроизводительной памяти и имеет собственный процессор. Программная кэш-память — это некоторая область системной памяти, зарезервированная для дискового кэша и управляемая утилитой (например, Windows SmartDrive).Объем программной кэш-памяти рекомендуется ограничивать четвертью объема системной памяти). В многозадачных системах выгодно иметь HDD с мультисегментной кэш-памятью (для каждой задачи отводится своя часть кэша – сегмент). В адаптивной системной кэш-памяти для повышения производительности размер и количество сегментов могут изменяться. Вопросы для самопроверки:
Список литературы:
|
Учебно-методический комплекс дисциплины обсужден на заседании кафедры... Защита информационных процессов в компьютерных системах 090104. 65 – Комплексная защита объектов информатизации Форма подготовки... |
Учебно-методический комплекс дисциплины обсужден на заседании кафедры... Системы и сети связи 090104. 65 – Комплексная защита объектов информатизации Форма подготовки очная |
||
Учебно-методический комплекс дисциплин по дисциплине «Веб-дизайн» По дисциплине «Веб-дизайн» 090104. 65 – Комплексная защита объектов информатизации Форма подготовки очная |
Учебно-методический комплекс дисциплины «защита прав потребителей» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Практикум на эвм» Учебно-методический комплекс составлен в соответствии с требованиями государственного стандарта высшего профессионального образования... |
Учебно-методический комплекс дисциплины «технология и комплексная... Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины информатика и ЭВМ в психологии... Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «организационное поведение» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Торговое оборудование» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «Русский язык и культура речи» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Системное программное обеспечение» Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «Релейная защита и автоматизация» Целью изучения дисциплины является подготовка инженеров в области релейной защиты и автоматики систем электроснабжения |
||
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины обсужден на заседании кафедры... Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «римское право» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Поиск |