h - высота области построения графика. Обратите внимание на то, что точное значение выражения 250 - 70х(250/1000) равно 232,5. Но т. к. индексом свойства pixels, которое используется для вывода точки на поверхность Canvas, может быть только целое значение, то число 232,5 округляется к ближайшему целому, которым является число 233.
Следующая программа, текст которой приведен в листинге 10.5, используя свойство pixels, выводит график функции у = 2 sin(jc) e*/5. Для построения графика используется вся доступная область формы, причем если во время работы программы пользователь изменит размер окна, то график будет выведен заново с учетом реальных размеров окна.
Основную работу выполняет процедура GrOfFunc, которая сначала вычисляет максимальное (у2) и минимальное (yl) значения функции на отрезке [x1l,x2]. Затем, используя информацию о ширине (Forml.Clientwidth -40) и высоте (Form1.ClientHeight - 40) области вывода графика, вычисляет масштаб по осям X (mх) иY(mу).
Высота и ширина области вывода графика определяется размерами рабочей (клиентской) области формы, т. е. без учета области заголовка и границ. После вычисления масштаба процедура вычисляет координату у горизонтальной оси (уо) и вычерчивает координатные оси графика. Затем выполняется непосредственное построение графика (рис. 10.10).
Вызов процедуры GrOfFunc выполняют процедуры обработки событий onPaint и onFormResize. Процедура TForm1. FormPaint обеспечивает вычерчивание графика после появления формы на экране в результате запуска программы, а также после появления формы во время работы программы, например, в результате удаления или перемещения других окон, полностью или частично перекрывающих окно программы. Процедура TForm1.FormResize обеспечивает вычерчивание графика после изменения размера формы.
Приведенная программа довольно универсальна. Заменив инструкции в теле функции f (х), можно получить график другой функции. Причем независимо от вида функции ее график будет занимать всю область, предназначенную для вывода.
Рассмотренная программа работает корректно, если функция, график которой надо построить, принимает как положительные, так и отрицательные значения. Если функция во всем диапазоне только положительная или только отрицательная, то в программу следует внести изменения. Какие — пусть это будет упражнением для читателя.
Вывод иллюстраций
Наиболее просто вывести иллюстрацию, которая находится в файле с расширением bmp, jpg или ico, можно при помощи компонента image, значок которого находится на вкладкеAdditional палитры.
Во время разработки формы иллюстрация задается установкой значения свойства picture путем выбора файла иллюстрации в стандартном диалоговом окне, которое появляется в результате щелчка на командной кнопке Load окна Picture Editor (рис. 10.12). Чтобы запустить Image Editor, нужно в окне Object Inspector выбрать свойство Picture и щелкнуть на кнопке с тремя точками.
Если размер иллюстрации больше размера компонента, то свойству strech нужно присвоить значение True и установить значения свойств width и Height пропорционально реальным размерам иллюстрации.
Чтобы вывести иллюстрацию в поле компонента image во время работы программы, нужно применить метод LoadFromFile к свойству Picture, указав в качестве параметра имя файла иллюстрации. Например, инструкция
Form1.Image1.Picture.LoadFromFile('e:\temp\bart.bmp')
загружает иллюстрацию из файла bart.bmp и выводит ее в поле вывода иллюстрации (imagel).
Метод LoadFromFile позволяет отображать иллюстрации различных графических форматов: BMP, WMF, JPEG (файлы с расширением jpg).
Битовые образы
При работе с графикой удобно использовать объекты типа TBitMap (битовый образ). Битовый образ представляет собой находящуюся в памяти компьютера, и, следовательно, невидимую графическую поверхность, на которой программа может сформировать изображение. Содержимое битового образа (картинка) легко и, что особенно важно, быстро может быть выведено на поверхность формы или области вывода иллюстрации (image). Поэтому в программах битовые образы обычно используются для хранения небольших изображений, например, картинок командных кнопок.
Загрузить в битовый образ нужную картинку можно при помощи метода LoadFromFlie, указав в качестве параметра имя BMP-файла, в котором находится нужная иллюстрация.
Например, если в программе объявлена переменная pic типа TBitMap, то после выполнения инструкции pic.LoadFromFiie('е:\images\aplane.bmp') битовый образ pic будет содержать изображение самолета. Вывести содержимое битового образа (картинку) на поверхность формы или области вывода иллюстрации можно путем применения метода Draw к соответствующему свойству поверхности (canvas). Например, инструкция Image1.Canvas.Draw(x,у, bm) выводит картинку битового образа bm на поверхность компонента image 1 (параметры х и у определяют положение левого верхнего угла картинки на поверхности компонента).
Если перед применением метода Draw свойству Transparent объекта TBitMap присвоить значение True, то фрагменты рисунка, окрашенные цветом, совпадающим с цветом левого нижнего угла картинки, не будут выве-
дены — через них будет как бы проглядывать фон. Если в качестве "прозрачного" нужно использовать цвет, отличный от цвета левой нижней точки рисунка, то свойству Transparentcoior следует присвоить значение символьной константы, обозначающей необходимый цвет.
Следующая программа, текст которой приведен в листинге 10.7, демонстрирует использование битовых образов для формирования изображения из нескольких элементов.
После запуска программы в окне приложения (рис. 10.14) появляется изображение летящих на фоне неба самолетов. Фон и изображение самолета -битовые образы, загружаемые из файлов. Белое поле вокруг левого самолета показывает истинный размер картинки битового образа aplane. Белое поле вокруг правого самолета отсутствует, т. к. перед его выводом свойству Transparent битового образа было присвоено значение True.
Мультипликация.
Под мультипликацией обычно понимается движущийся и меняющийся рисунок. В простейшем случае рисунок может только двигаться или только меняться.
Как было показано выше, рисунок может быть сформирован из графических примитивов (линий, окружностей, дуг, многоугольников и т. д.). Обеспечить перемещение рисунка довольно просто: надо сначала вывести рисунок на экран, затем через некоторое время стереть его и снова вывести этот же рисунок, но уже на некотором расстоянии от его первоначального положения. Подбором времени между выводом и удалением рисунка, а также расстояния между старым и новым положением рисунка (шага перемещения), можно добиться того, что у наблюдателя будет складываться впечатление, что рисунок равномерно движется по экрану.
Основную работу выполняет процедура Ris, которая стирает окружность и выводит ее на новом месте. Стирание окружности выполняется путем перерисовки окружности поверх нарисованной, но цветом фона.
Для обеспечения периодического вызова процедуры Ris в форму программы добавлен невизуальный компонент Timer (таймер), значок которого находится на вкладке System палитры компонентов.
Добавляется компонент Timer к форме обычным образом, однако, поскольку компонент Timer является невизуальным, т. е. во время работы программы не отображается на форме, его значок можно поместить в любое место формы. Компонент Timer генерирует событие OnTimer. Период возникновения события OnTimer измеряется в миллисекундах и определяется значением свойства Interval. Следует обратить внимание на свойство Enabled. Оно дает возможность программе "запустить" или "остановить" таймер. Если значение свойства Enabled равно False, то событие OnTimer не возникает. Событие onTimer в рассматриваемой программе обрабатывается процедурой TimeriTimer, которая, в свою очередь, вызывает процедуру Ris. Таким образом, в программе реализован механизм периодического вызова процедуры Ris.
Переменные х, у (координаты центра окружности) и dx (приращение координаты х при движении окружности) объявлены вне процедуры Ris, т. е. они являются глобальными. Поэтому надо не забыть выполнить их инициализацию (в программе инициализацию глобальных переменных реализует процедура FormActivate). При программировании сложных изображений, состоящих из множества элементов, используется метод, который называется методом базовой точки. Суть этого метода заключается в следующем:
1. Выбирается некоторая точка изображения, которая принимается за базовую.
2. Координаты остальных точек отсчитываются от базовой точки.
3. Если координаты точек изображения отсчитывать от базовой в относительных единицах, а не в пикселах, то обеспечивается возможность масштабирования изображения.
На рис. 10.17 приведено изображение кораблика. Базовой точкой является точка с координатами (X0 Y0). Координаты остальных точек отсчитываются именно от этой точки.
Отрисовку и стирание изображения кораблика выполняет процедура Titanik, которая получает в качестве параметров координаты базовой точки и цвет, которым надо вычертить изображение кораблика. Если при вызове процедуры цвет отличается от цвета фона формы, то процедура рисует кораблик, а если совпадает — то "стирает". В процедуре Titanik объявлены константы dx и dy, определяющие шаг (в пикселах), используемый при вычислении координат точек изображения. Меняя значения этих констант, можно проводить масштабирование изображения.
В предыдущем примере изображение формировалось из графических примитивов. Теперь рассмотрим, как можно реализовать перемещение одного сложного изображения на фоне другого, например перемещение самолета на фоне городского пейзажа. Эффект перемещения картинки может быть создан путем периодической перерисовки картинки с некоторым смещением относительно ее прежнего положения. При этом предполагается, что перед выводом картинки в новой точке сначала удаляется предыдущее изображение. Удаление картинки может быть выполнено путем перерисовки всей фоновой картинки или только той ее части, которая перекрыта битовым образом движущегося объекта. В рассматриваемой программе используется второй подход. Картинка выводится применением метода Draw к свойству canvas компонента Image, a стирается путем копирования (метод copyRect) нужной части фона из буфера на поверхность компонента Image.
Для хранения битовых образов (картинок) фона и самолета, а также копии области фона, перекрываемой изображением самолета, используются объекты типа TBitMap, которые создаются динамически процедурой FormActivate. Эта же процедура загружает из файлов картинки фона (factory.bmp) и самолета (aplane.bmp), а также сохраняет область фона, на которую первый раз будет накладываться картинка. Сохранение копии фона выполняется при помощи метода CopyRect, который позволяет выполнить копирование прямоугольного фрагмента одного битового образа в другой. Объект, к которому применяется метод CopyRect, является приемником копии битового образа. В качестве параметров методу передаются координаты и размер области, куда должно быть выполнено копирование, поверхность, откуда должно быть выполнено копирование, а также положение и размер копируемой области. Информация о положении и размере копируемой в буфер области фона, на которую будет наложено изображение самолета и которая впоследствии должна быть восстановлена из буфера, находится в структуре BackRct типа TRect. Для заполнения этой структуры используется функция Bounds. Следует обратить внимание на то, что начальное значение переменной х, которая определяет положение левой верхней точки битового образа движущейся картинки, — отрицательное число, равное ширине битового образа картинки. Поэтому в начале работы программы изображение самолета не появляется, картинка отрисовывается за границей видимой области. С каждым событием OnTimer значение координаты х увеличивается, и на экране появляется та часть битового образа, координаты которой больше нуля. Таким образом, у наблюдателя создается впечатление, что самолет вылетает из-за левой границы окна.
3.2 Анимация и мультимедиа в прикладном программировании.
Мультимедиа-возможности Delphi
Большинство современных программ, работающих в среде Windows, являются мультимедийными. Такие программы обеспечивают просмотр видеороликов и мультипликации, воспроизведение музыки, речи, звуковых эффектов. Типичными примерами мультимедийных программ являются игры и обучающие программы.
Delphi предоставляет в распоряжение программиста два компонента, которые позволяют разрабатывать мультимедийные программы:
Animate — обеспечивает вывод простой анимации (подобной той, которую видит пользователь во время копирования файлов);
MediaPlayer — позволяет решать более сложные задачи, например, воспроизводить видеоролики, звук, сопровождаемую звуком анимацию.
Хотя анимация, находящаяся в AVI-файле может сопровождаться звуковыми эффектами (так ли это — можно проверить, например, при помощи стандартной программы Проигрыватель Windows Media), компонент Animate обеспечивает воспроизведение только изображения. Для полноценного воспроизведения сопровождаемой звуком анимации следует использовать компонент меdiaPlayer.
Компонент Animate добавляется к форме обычным образом. После добавления компонента к форме следует установить значения его свойств. Свойства компонента Animate перечислены в табл.
Таблица Свойства компонента Animate
|
|
|
|
|
Свойство
|
Определяет
|
|
|
Name
|
Имя компонента. Используется для доступа к свойствам компонента и управлением его поведением
|
|
|
FileName
|
Имя AVI-файла в котором находится анимация, отображаемая при помощи компонента
|
|
|
StartFrame
|
Номер кадра, с которого начинается отображение анимации
|
|
|
stopFrame
|
Номер кадра, на котором заканчивается отображение анимации
|
|
|
Activate
|
Признак активизации процесса отображения кадров анимации
|
|
|
Color
|
Цвет фона компонента (цвет "экрана"), на котором воспроизводится анимация
|
|
|
Transparent
|
Режим использования "прозрачного" цвета при отображении анимации
|
|
|
Repetitions
|
Количество повторов отображения анимации
|
|
Следует еще раз обратить внимание, что компонент Animate предназначен для воспроизведения AVI-файлов, которые содержат
|