ДИАГНОСТИКА ПРЕДМЕТНОЙ ОДАРЕННОСТИ
Под предметной одаренностью понимается развитие уникальных способностей учащегося в определенных сферах знаний – математическая, физическая, гуманитарная, химико-биологическая и т.д.
Математическая одаренность
Диагностика математических способностей наиболее актуальна на сегодняшний день при изучении одаренности как детей, так и взрослых. Как справедливо указывает В.Н.Дружинин «причин этому несколько. Первая причина состоит в том, что математика одна из наиболее древних наук, является неотъемлемой частью человеческой культуры, и овладение ее основами или элементами - жизненная задача каждого человека. Вторая причина состоит в том, что для овладения математическим материалом и успешного решения математических задач требуется высокий уровень развития абстрактного мышления…..Третья причина в высокой разработанности общепсихологической теории мышления, - заимствование многих моделей математики» [5, С. 161-185].
Одно из определений математической способности дается В.Н.Дружининым и его школой: «Математическая способность рассматривается как свойство психологической функциональной системы деятельности (математической деятельности), а отдельные элементарные способности как свойства систем, ответственных за протекание познавательных процессов» [там же].
Существует несколько популярных классификаций математических способностей.
Виды элементарных процессов лежащих в основе математической познавательной деятельности по А. Кэймерону [там же].
1) анализ математической структуры и перекомбинирование ее элементов;
2) сравнение и классификация числовых и пространственных данных;
3) применение общих принципов и оперирование абстрактными количествами;
4) сила воображения.
Несколько иной список предлагает В. Коммсрел (там же):
1) ясное и логическое мышление;
2) сила абстракции;
3) комбинаторные способности;
4) пространственные представления и операции;
5) критическое мышление;
6) память.
Г. Томас выделяет следующие элементарные способности, лежащие в основе математической деятельности.
1) абстракция;
2) логическое рассуждение;
3) специфическое восприятие;
4) сила интуиции;
5) умение использовать формулы;
6) математическое воображение.
Выдающийся американский психолог Э. Торндайк предложил следующий список элементарных математических способностей, основанный на результатах:
1) способность обращаться с символами;
2) способность выбора и установления отношений;
3) способность обобщения и систематизации;
4) способность к выбору элементов и данных;
5) способность к приведению в систему идей и навыков.
Аналогичный интроспективный список выдвинул А. Ф. Лазурский:
1) систематичность и последовательность мышления;
2) его отчетливость;
3) способность к обобщению;
4) сообразительность;
5) память в области чисел.
Ф. Митчел приводит такую последовательность математических способностей [5]:
1) классификация;
2) понимание и операции с символами;
3) дедукция;
4) манипуляция с абстракциями без опоры на конкретное.
Выдающийся советский математик А. Н. Колмогоров выделил следующие элементарные математические способности [22]:
1) алгоритмическая способность;
2) геометрическое воображение;
3) искусство логического рассуждения.
В советской психологии наиболее полно математические способности исследовал В. А. Крутецкий (Основы педагогической психологии. М., 2000).
На основе информационного подхода он выделил следующие математические способности при психологическом анализе познавательной деятельности школьников:
1) получение математической информации—способность к формализованному восприятию формальной структуры задачи;
2) переработка математической информации;
а) логическое мышление отношениями, числами, символами;
б) обобщение математических объектов, отношений, действий;
в) способность мыслить свернутыми структурами;
г) гибкость мыслительных процессов;
д) ясность, простота, экономичность и рациональность решений;
е) обратимость мыслительного процесса;
3) математическая память.
4) математическая направленность ума.
Исходя из приведенных выше критериев математической одаренности мы видим, что она не сводится к общему интеллекту, а представляет собой свойство системы познавательных процессов, проявляющееся в эффективном решении сложных познавательных задач, решение которых требует умственных операций с пространственным и символическим материалом без опоры на наглядность.
Поэтому наиболее продуктивным оказывается тест математических аналогий - «Задачи Гайштута» (ТМА). Авторские права не позволяют привести полностью этот тест, однако, описание теста и ссылки на интерактивные источники могут быть весьма полезны как для диагностики математической одаренности, так и для развития указанных способностей [23].
Физическая и химико-биологическая одаренность
Физическая и химико-биологическая одаренность могут рассматриваться как уровень формирования естественно-научного мышления. В рамках критериальной диагностики разработаны тесты для диагностики естественнонаучного мышления (Г. А. Берулава, 1992). Тесты естественнонаучного мышления для учащихся 7 (ТЕМ - 7) и 8 класса (ТЕМ - 8) включают в себя систему заданий, являющихся моделью когнитивной организации предметной области естествознания. Каждый тест содержит родовые задачи, каждой из которых соответствует некоторый класс индивидуальных задач. В тесты включены лишь задачи качественного характера. В естественнонаучных предметах процент задач, решаемых по жесткому алгоритму, очень незначителен. Это связано с тем, что взаимодействие объектов, лежащих в основе любой естественнонаучной задачи, в значительной степени определяется условиями взаимодействия и индивидуальными свойствами объектов взаимодействия, в отличие, например, от математики, где данные факторы не имеют значения. При определении содержательной валидности тест должен ориентироваться на внешние социально обусловленные и педагогически адаптированные требования. Однако сам теоретический критерий валидности должен быть психологическим. При этом существенно, что он должен быть различным для дифференцированных моделей обучения, реализуемых в рамках школ различных типов.
Все задания носят качественный характер. При этом сюжетная форма заданий, без наличия в их условиях каких - либо абстрактных символов и знаков, не позволяет ассоциировать их с какой - либо абстрактной теорией. Каждый тест для диагностики сформированности у учащихся естественнонаучного мышления содержит задачи, в основе которых лежит 5 естественнонаучных законов, являющихся для усвоения учебного материала в 7 и 8 классах основополагающими. Каждому закону соответствуют шесть задач, три из которых составлены на материале физики, в рамках которого изучались данные законы, и три - на межпредметном материале (биологии и физики в 7 классе, биологии, физики и химии - в 8). Каждый тест содержит два субтеста, один из которых диагностирует сформированность дифференциально - синтетической стадии естественнонаучного мышления, а второй – синтетической.
Приведем примеры заданий из дифференциально - синтетического субтеста теста естественнонаучного мышления для 7 класса (ТЕМ - 7).
Задание: «Почему нельзя тушить горящий керосин, заливая его водой:
а) вода будет испаряться с поверхности горящего керосина;
б) вода будет смешиваться с керосином вследствие явления диффузии;
в) плотность воды больше плотности керосина, поэтому вода будет опускаться вниз, а керосин будет всплывать наверх и не закроет доступ воздуха, необходимого для горения керосина.
Варианты ответов для задания субтеста (их по три в каждой задаче) позволяют диагностировать преимущественный способ мышления учащегося: эмпирически - бытовой (ему в данном задании соответствует 1- й вариант ответа), эмпирически - научный (ему соответствует 2 - й вариант ответа) или дифференциально - синтетический (3 - й вариант ответа), который характеризует уже теоретический тип мышления. Аналогичную структуру имеют задания синтетического субтеста.
Задание: « Почему кит, оказавшись на мели, погибает?:
а) сила трения, имеющаяся на твердой почве, мешает ему добраться до воды;
б) кит задыхается от воздуха;
в) вследствие закона Архимеда вес кита оказывается незначительным, на суше выталкивающая сила отсутствует, и кит погибает под действием собственного веса.
В основе решения данной задачи лежит закон Архимеда, в то же время она построена на нехарактерном для курса физики биологическом материале. Эмпирически - бытовому способу мышления в данном случае соответствует 2 - й вариант ответа, эмпирически - научному - 1 - й вариант, теоретическому (дифференциально - синтетическому) способу мышления соответствует 3 - й вариант ответа. При разработке структуры теста естественнонаучного мышления для 8 класса (ТЕМ - 8) был использован тот же принцип построения, но законы, лежащие в его основе, являются уже репрезентативными для естественнонаучного познания учащихся 8 класса. Задания дифференциально - синтетического субтеста ТЕМ - 8 имеют структуру, аналогичную заданиям дифференциально - синтетического субтеста ТЕМ - 7.
Задание: «Почему притертую стеклянную пробку легко вынуть из флакона, если потереть его горлышко сухой тряпкой или бумагой?:
а) при натирании горлышка бутылки совершается механическая работа, благодаря чему увеличивается внутренняя энергия горлышка, оно нагревается и расширяется;
б) из - за колебаний горлышка бутылки пробка расшатывается, и ее легче вынуть из бутылки;
в) в результате силы трения горлышко расшатывается, и поэтому пробку легче вынуть из бутылки.
Вариант ответа "б" при этом соответствует эмпирически - бытовому способу мышления, "в" - эмпирически - научному. Первый вариант ответа характеризует теоретический способ мышления (в данном случае его дифференциально - синтетическую стадию). В основе решения предложенной задачи лежит закон сохранения энергии. В рамках дифференциально - синтетического субтеста ему соответствуют две задачи, построенные на характерном для курса физики материале. В синтетическом субтесте данный закон применяется в условиях, адекватных материалу, используемому в курсах биологии и химии.
Структура теста позволяет оценить сформированность процесса теоретического обобщения, понимаемого как восхождение от абстрактного к конкретному. Это обеспечивается тем, что каждому естественнонаучному закону соответствует серия задач одинаковой объективной сложности, в которых варьируются лишь конкретные условия применения закона.
Полученные данные позволяют сделать вывод о том, что разработанные тесты удовлетворяют необходимым статистическим критериям. Диагностика сформированности естественнонаучного мышления с помощью разработанных тестов создает возможность не только определить тип естественнонаучного мышления (эмпирический или теоретический), но и стадию их сформированности. В рамках эмпирического типа - это эмпирически - бытовая и эмпирически - научная стадии.
Качественная обработка результатов позволяет также сделать вывод, какие типы связей (законов) вызывают затруднение у учащихся, и произвести в этом направлении целенаправленную коррекцию.
|