Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность


Скачать 0.95 Mb.
Название Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность
страница 1/9
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
  1   2   3   4   5   6   7   8   9
ДИАГНОСТИКА ПРЕДМЕТНОЙ ОДАРЕННОСТИ

Под предметной одаренностью понимается развитие уникальных способностей учащегося в определенных сферах знаний – математическая, физическая, гуманитарная, химико-биологическая и т.д.

Математическая одаренность

Диагностика математических способностей наиболее актуальна на сегодняшний день при изучении одаренности как детей, так и взрослых. Как справедливо указывает В.Н.Дружинин «причин этому несколько. Первая причина состоит в том, что математика одна из наиболее древних наук, является неотъемлемой частью человеческой культуры, и овладение ее основами или элементами - жизненная задача каждого человека. Вторая причина состоит в том, что для овладения математическим материалом и успешного решения математических задач требуется высокий уровень развития абстрактного мышления…..Третья причина в высокой разработанности общепсихологической теории мышления, - заимствование многих моделей математики» [5, С. 161-185].

Одно из определений математической способности дается В.Н.Дружининым и его школой: «Математическая способность рассматривается как свойство психологической функциональной системы деятельности (математической деятельности), а отдельные элементарные способности как свойства систем, ответственных за протекание познавательных процессов» [там же].

Существует несколько популярных классификаций математических способностей.

Виды элементарных процессов лежащих в основе математической познавательной деятельности по А. Кэймерону [там же].

1) анализ математической структуры и перекомбинирование ее элементов;

2) сравнение и классификация числовых и пространственных данных;

3) применение общих принципов и оперирование абстрактными количествами;

4) сила воображения.

Несколько иной список предлагает В. Коммсрел (там же):

1) ясное и логическое мышление;

2) сила абстракции;

3) комбинаторные способности;

4) пространственные представления и операции;

5) критическое мышление;

6) память.

Г. Томас выделяет следующие элементарные способности, лежащие в основе математической деятельности.

1) абстракция;

2) логическое рассуждение;

3) специфическое восприятие;

4) сила интуиции;

5) умение использовать формулы;

6) математическое воображение.

Выдающийся американский психолог Э. Торндайк предложил следующий список элементарных математических способностей, основанный на результатах:

1) способность обращаться с символами;

2) способность выбора и установления отношений;

3) способность обобщения и систематизации;

4) способность к выбору элементов и данных;

5) способность к приведению в систему идей и навыков.

Аналогичный интроспективный список выдвинул А. Ф. Лазурский:

1) систематичность и последовательность мышления;

2) его отчетливость;

3) способность к обобщению;

4) сообразительность;

5) память в области чисел.

Ф. Митчел приводит такую последовательность математических способностей [5]:

1) классификация;

2) понимание и операции с символами;

3) дедукция;

4) манипуляция с абстракциями без опоры на конкретное.

Выдающийся советский математик А. Н. Колмогоров выделил следующие элементарные математические способности [22]:

1) алгоритмическая способность;

2) геометрическое воображение;

3) искусство логического рассуждения.

В советской психологии наиболее полно математические способности исследовал В. А. Крутецкий (Основы педагогической психологии. М., 2000).

На основе информационного подхода он выделил следующие математические способности при психологическом анализе познавательной деятельности школьников:

1) получение математической информации—способность к формализованному восприятию формальной структуры задачи;

2) переработка математической информации;

а) логическое мышление отношениями, числами, символами;

б) обобщение математических объектов, отношений, действий;

в) способность мыслить свернутыми структурами;

г) гибкость мыслительных процессов;

д) ясность, простота, экономичность и рациональность решений;

е) обратимость мыслительного процесса;

3) математическая память.

4) математическая направленность ума.

Исходя из приведенных выше критериев математической одаренности мы видим, что она не сводится к общему интеллекту, а представляет собой свойство системы познавательных процессов, проявляющееся в эффективном решении сложных познавательных задач, решение которых требует умственных операций с пространственным и символическим материалом без опоры на наглядность.

Поэтому наиболее продуктивным оказывается тест математических аналогий - «Задачи Гайштута» (ТМА). Авторские права не позволяют привести полностью этот тест, однако, описание теста и ссылки на интерактивные источники могут быть весьма полезны как для диагностики математической одаренности, так и для развития указанных способностей [23].

Физическая и химико-биологическая одаренность

Физическая и химико-биологическая одаренность могут рассматриваться как уровень формирования естественно-научного мышления. В рамках критериальной диагностики разработаны тесты для диагностики естественнонаучного мышления (Г. А. Берулава, 1992). Тесты естественнонаучного мышления для учащихся 7 (ТЕМ - 7) и 8 класса (ТЕМ - 8) включают в себя систему заданий, являющихся моделью когнитивной организации предметной области естествознания. Каждый тест содержит родовые задачи, каждой из которых соответствует некоторый класс индивидуальных задач. В тесты включены лишь задачи качественного характера. В естественнонаучных предметах процент задач, решаемых по жесткому алгоритму, очень незначителен. Это связано с тем, что взаимодействие объектов, лежащих в основе любой естественнонаучной задачи, в значительной степени определяется условиями взаимодействия и индивидуальными свойствами объектов взаимодействия, в отличие, например, от математики, где данные факторы не имеют значения. При определении содержательной валидности тест должен ориентироваться на внешние социально обусловленные и педагогически адаптированные требования. Однако сам теоретический критерий валидности должен быть психологическим. При этом существенно, что он должен быть различным для дифференцированных моделей обучения, реализуемых в рамках школ различных типов.

Все задания носят качественный характер. При этом сюжетная форма заданий, без наличия в их условиях каких - либо абстрактных символов и знаков, не позволяет ассоциировать их с какой - либо абстрактной теорией. Каждый тест для диагностики сформированности у учащихся естественнонаучного мышления содержит задачи, в основе которых лежит 5 естественнонаучных законов, являющихся для усвоения учебного материала в 7 и 8 классах основополагающими. Каждому закону соответствуют шесть задач, три из которых составлены на материале физики, в рамках которого изучались данные законы, и три - на межпредметном материале (биологии и физики в 7 классе, биологии, физики и химии - в 8). Каждый тест содержит два субтеста, один из которых диагностирует сформированность дифференциально - синтетической стадии естественнонаучного мышления, а второй – синтетической.

Приведем примеры заданий из дифференциально - синтетического субтеста теста естественнонаучного мышления для 7 класса (ТЕМ - 7).

Задание: «Почему нельзя тушить горящий керосин, заливая его водой:

а) вода будет испаряться с поверхности горящего керосина;

б) вода будет смешиваться с керосином вследствие явления диффузии;

в) плотность воды больше плотности керосина, поэтому вода будет опускаться вниз, а керосин будет всплывать наверх и не закроет доступ воздуха, необходимого для горения керосина.

Варианты ответов для задания субтеста (их по три в каждой задаче) позволяют диагностировать преимущественный способ мышления учащегося: эмпирически - бытовой (ему в данном задании соответствует 1- й вариант ответа), эмпирически - научный (ему соответствует 2 - й вариант ответа) или дифференциально - синтетический (3 - й вариант ответа), который характеризует уже теоретический тип мышления. Аналогичную структуру имеют задания синтетического субтеста.

Задание: « Почему кит, оказавшись на мели, погибает?:

а) сила трения, имеющаяся на твердой почве, мешает ему добраться до воды;

б) кит задыхается от воздуха;

в) вследствие закона Архимеда вес кита оказывается незначительным, на суше выталкивающая сила отсутствует, и кит погибает под действием собственного веса.

В основе решения данной задачи лежит закон Архимеда, в то же время она построена на нехарактерном для курса физики биологическом материале. Эмпирически - бытовому способу мышления в данном случае соответствует 2 - й вариант ответа, эмпирически - научному - 1 - й вариант, теоретическому (дифференциально - синтетическому) способу мышления соответствует 3 - й вариант ответа. При разработке структуры теста естественнонаучного мышления для 8 класса (ТЕМ - 8) был использован тот же принцип построения, но законы, лежащие в его основе, являются уже репрезентативными для естественнонаучного познания учащихся 8 класса. Задания дифференциально - синтетического субтеста ТЕМ - 8 имеют структуру, аналогичную заданиям дифференциально - синтетического субтеста ТЕМ - 7.

Задание: «Почему притертую стеклянную пробку легко вынуть из флакона, если потереть его горлышко сухой тряпкой или бумагой?:

а) при натирании горлышка бутылки совершается механическая работа, благодаря чему увеличивается внутренняя энергия горлышка, оно нагревается и расширяется;

б) из - за колебаний горлышка бутылки пробка расшатывается, и ее легче вынуть из бутылки;

в) в результате силы трения горлышко расшатывается, и поэтому пробку легче вынуть из бутылки.

Вариант ответа "б" при этом соответствует эмпирически - бытовому способу мышления, "в" - эмпирически - научному. Первый вариант ответа характеризует теоретический способ мышления (в данном случае его дифференциально - синтетическую стадию). В основе решения предложенной задачи лежит закон сохранения энергии. В рамках дифференциально - синтетического субтеста ему соответствуют две задачи, построенные на характерном для курса физики материале. В синтетическом субтесте данный закон применяется в условиях, адекватных материалу, используемому в курсах биологии и химии.

Структура теста позволяет оценить сформированность процесса теоретического обобщения, понимаемого как восхождение от абстрактного к конкретному. Это обеспечивается тем, что каждому естественнонаучному закону соответствует серия задач одинаковой объективной сложности, в которых варьируются лишь конкретные условия применения закона.

Полученные данные позволяют сделать вывод о том, что разработанные тесты удовлетворяют необходимым статистическим критериям. Диагностика сформированности естественнонаучного мышления с помощью разработанных тестов создает возможность не только определить тип естественнонаучного мышления (эмпирический или теоретический), но и стадию их сформированности. В рамках эмпирического типа - это эмпирически - бытовая и эмпирически - научная стадии.

Качественная обработка результатов позволяет также сделать вывод, какие типы связей (законов) вызывают затруднение у учащихся, и произвести в этом направлении целенаправленную коррекцию.
  1   2   3   4   5   6   7   8   9

Похожие:

Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Рабочая программа пересмотрена, обсуждена и одобрена для исполнения...
Математическая статистика, эконометрика и актуарные расчеты
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Рабочая программа по дисциплине «теория вероятностей и математическая статистика»
Теория вероятностей и математическая статистика. Рабочая программа для студентов бакалавриата, обучающихся по направлениям 080100...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Единая голографическая информационна теория вселенной егитв
Энергополевая информационная гологра-фичность природы мира и вселенной, как вечная и единая духовная, физическая и математическая...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Математическая статистика, эконометрика и актуарные расчеты

Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Программа дисциплины Демографические модели Версия 7 от 11. 10. 2010...
Студенты, приступающие к изучению курса, должны прослушать курс «Теория вероятности и математическая статистика»
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Математика
Математическая логика и теория алгоритмов [Текст] : учеб пособие / В. Н. Крупский. М. Иц "Академия", 2013. 416 с. (Высшее профессиональное...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Математическая морфология. Электронный математический и медико-биологический...
Зубрицкий А. Н. Памятные даты патологоанатомов России 2016 года. – Смоленск, 2016. – 101 c
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Содержание курсовой работы
Курсовая работа по дисциплине «Теория вероятностей и математическая статистика» имеет целью получение навыков самостоятельного анализа...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Математическая морфология. Электронный математический и медико-биологический...
Установлено, что такое лечение является эффективным и может быть методом выбора в арсенале большого количества методов терапии хронического...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Королев В. Ю. Теория вероятностей и математическая статистика / В. Ю.
Вентцель Е. С. Теория вероятностей / Е. С. Вентцель. – М.: Высш шк., 2003. – 520 с
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Динамическая поддержка расширений процессора в кросс-системе
В статье рассматривается математическая модель поддерживаемых акселераторов и интерфейса с основным процессором. Описывается язык...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Курсовая работа по дисциплине: «Теория вероятности и математическая статистика»
К началу 2009 численность населения планеты составила 6,6 млрд человек. Согласно демографическим исследованиям, численность населения...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Введение 4 1 экономическая постановка задачи 5 2 математическая постановка задачи 6
В пояснительной записке описаны алгоритмы решения задач, подробное описание всех макросов и модулей используемых в программе, другими...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Правительство Российской Федерации Государственное образовательное...
«Теория баз данных» требует предварительных знаний в следующих областях: дискретная математика, математическая логика, основы теории...
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Анкета «Как распознать одаренность» Как распознать одарённость Методика...
В сборнике собрана информация об основных методиках, используемых при выявлении одарённых и талантливых детей
Математическая, физическая, гуманитарная, химико-биологическая и т д. Математическая одаренность icon Анкета «Как распознать одаренность» Как распознать одарённость Методика...
Муниципальное общеобразовательное учреждение Средняя общеобразовательная школа №20

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск