Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров»


Скачать 2.44 Mb.
Название Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров»
страница 3/12
Тип Учебно-методический комплекс
rykovodstvo.ru > Руководство эксплуатация > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   12
хлорофилл состоит из двух соединений: сине-зеленого хлорофилла а 55Н72О5N4Mg) и желто-зеленого хлорофилла о (С55НО6 N4Mg), которые различаются по степени окисленности и оптическим свойствам. Оба соединения представляют собой магниевые соли тетрапиррола. Хлорофилл а более устойчив к воздействию теплоты, чем хлорофилл б. Хлорофилл и его производные вырабатывают из хвои, листьев крапивы, другого растительного сырья. Зеленый краситель применяют для окрашивания ликеров, эссенций, безалкогольных напитков, а также кондитерских изделий. Хлорофилл при термической обработке продуктов нестоек.

В растительных продуктах хлорофиллу сопутствуют каротиноиды большая группа пигментов желтого, оранжевого и красного цветов. Например, в стручковом перце содержится до ста отдельных пигментов каротиноидов: каротин, капсорубин, капсантин, криптоксантин и др. Термин каротиноиды относится ко многим растительным желтым пигментам, растворимым в жирах и жировых растворителях.

К бескислородным каротиноидам относятся а-, b- и y-каротины и ликопин. Термин «каротины» происходит от латинского carota, что означает морковь. Наиболее распространенная форма каротинов — В-каротин. В растительных продуктах, окрашенных в желто-оранжевые тона, обычно встречается смесь изомеров каротина: а-, В- и у-каротины, которые различаются оптическими свойствами. Желтую окраску корнеплодов моркови, плодов абрикосов, рябины, облепихи, апельсинов, мандаринов, бананов, дыни, желтка куриного яйца и меланжа, подсолнечного и сливочного масла, грибов (лисичек, сыроежек, рыжиков) обусловливают каротины наряду с другими каротиноидами. В 1 л подсолнечного масла содержится от 1 до 15 мг каротиноидов, в 1 кг красной моркови — 90 — 120, в 1 кг грунтовых томатов — 15 — 20 мг, примерно столько же в облепихе, черноплодной рябине, абрикосах. Хорошими источниками В-каротина служат тыква, сладкий перец, зеленый лук, зелень петрушки и укропа, салат, черемша, шпинат, плоды шиповника. В моркови 85 % общего количества каротинов составляет В-каротин.

Желтый краситель каротин получают из моркови, тыквы, зеленой хвои, плодов шиповника, водорослей, цветков календулы (ноготки). Каротин можно применять в пищевой промышленности для подкрашивания сливочного масла, маргарина, сыров, а также в качестве антиоксиданта для улучшения сохраняемости пищевых жиров. Препараты желтого красителя, богатые каротином, перспективны для окраски и витаминизации плодовых и овощных соков, кондитерских изделий, напитков, мороженого, хлебобулочных и других изделий. Каротины предупреждают развитие авитаминоза А, причем В-каротин в два раза более активен по сравнению с а- и у-формами.

В молекуле ликопина содержится 13 двойных связей. Наряду с другими пигментами он присутствует в плодах абрикосов, шиповника, мякоти арбуза, ярко-красных сортов грейпфрута, хурмы. Ликопин — основной пигмент плодов красных томатов. Аналогично каротинам его применяют в качестве пищевого колоранта. Источником для его промышленного получения служат отходы переработки плодов спелых томатов. Ликопин не обладает витаминными свойствами, но по окрашивающей способности превосходит каротин.

Рыльца цветков шафрана являются сырьем для получения желтого красителя кроцетина, который применяется в кондитерской промышленности. Кроцетин (гликозид кроцин) имеет высокую окрашивающую способность: одна часть пигмента окрашивает в желтый цвет 200 тыс. частей воды.

К желтым пищевым красителям относится также биксин, который получают из вещества, окружающего семена биксы аннатовой. Биксин применяют для подкрашивания сыров и пищевых жиров.

Кислородсодержащие каротиноиды, называемые ксантофиллами, преобладают среди пигментов зерен желтой кукурузы, а также содержатся в кожуре мандаринов, плодах шиповника, других растительных продуктах с желтой окраской. Ксантофиллы можно рассматривать как производные каротинов. Среди ксантофиллов изучены, в частности, криптоксантин (содержится в кожуре плодов мандаринов, красном перце), является производным В-каротина и имеет свойства провитамина А; рубиксантин (в плодах шиповника), зеаксантин (в зернах кукурузы, плодах облепихи, курином желтке), виолаксантин (в ярко-желтых апельсинах).

Окраска многих плодов, ягод, овощей обусловлена флавоноидами. Это гетероциклические кислородсодержащие пигменты, придающие продуктам растительного происхождения основную цветовую гамму. В литературе описано более 2000 соединений, относящихся к этой группе. Молекулы флавоноидов имеют 15 углеродных атомов. Термином флавоноиды объединяют большое число естественных пигментов, представляющих собой водорастворимые фенольные гликозиды: флавоны и флавонолы с желтой окраской, антоцианы с красной, фиолетовой, синей окрасками.

Среди желтых пигментов наиболее распространены флавонол, кверцетин и его гликозиды, которые содержатся в груше, сливе, чешуе лука, а также плодах цитрусовых. Кверцетин и его гликозиды используют в качестве пищевых красителей. Желтую окраску имеет рибофлавин (витамин В2), который в небольших количествах содержится в цитрусовых, моркови, винограде, в больших — в яйцах, рыбных продуктах, субпродуктах: печени, почках, мозгах.

Антоцианы называют растительными хамелеонами. Это название произошло от греческих слов «антос» (цветок) и «цианос» (лазоревый, голубой). Многообразие окраски плодов, ягод, цветов обусловливается в основном антоцианами, которые присутствуют в форме гликозидов. Остатки сахаров (глюкозы, галактозы или рамнозы) связаны в молекуле гликозида с окрашенным агликоном антоцианидином. Спектр поглощения антоцианов имеет два максимума (в пределах 250 — 300 и 500 — 550 нм). Окраску ягод земляники определяет гликозид красного пеларгонидина. Малиновый цианидин содержится в ягодах брусники, смородины, ежевики, малины, в плодах вишни, терна, рябины. В состав большинства винных сортов винограда входят петунидин, дельфинидин и мальвидин. Около 70% плодов содержат гликозиды цианидина. Окраска кожуры синего баклажана обусловлена преимущественно дельфинидином. В большинстве плодов и овощей антоцианы сосредоточены в поверхностных эпидермальных слоях (яблоки, груши, сливы), а в некоторых сортах винограда и вишен — в мякоти. Антоцианидины присутствуют, как правило, в виде солеи. Полагают, что синий цвет антоцианов обусловлен комплексообразованием с металлами.

В зависимости от кислотности среды (рН) антоцианы могут изменять окраску. Например, красно-фиолетовый антоциан, выделенный из краснокочанной капусты, при рН 4 — 5 приобретает розовую окраску, при рН 2 — 3 — красную, при рН 7 — синюю, при рН 8 — зеленую, при рН 9 — зелено-желтую, при рН 10-желто-зеленую, при рН свыше 10 — желтую.

Антоцианы обусловливают окраску натуральных соков, вин, сиропов, наливок, фруктового мармелада, варенья, ликеров и других изделий, приготовленных из плодово-ягодного сырья. Для получения антоциановых пищевых красителей используют сок ежевики, черемухи, рябины, калины и т.д. Из отходов первичного виноделия и производства соков (виноградных выжимок) получают красный пищевой антоциановый краситель энин. Красные красители можно получать из цветков мальвы и махрового георгина, выжимок клюквы, малины, черники, черной смородины, вишни, красной свеклы и другого сырья. Эти красители применяют в кондитерском и ликероводочном производстве, для окрашивания безалкогольных напитков.

В качестве пищевых желтых красителей используют кверцетин и рутин (витамин Р). Сырьем для их получения служат зеленая масса гречихи, бутоны софоры японской, цветы каштана конского, для кверцетина — также щавель конский, листья хурмы, чешуя репчатого лука. Кверцетин и рутин обладают антиокислительными свойствами.

Окраска свежих и переработанных плодов и овощей является важным фактором оценки их качества. По окраске судят о степени зрелости плодов и ягод, свежести плодоовощных консервов.

При хранении и переработке ягод, фруктов, овощей красящие вещества могут разрушаться и изменять цвет. Особенно неблагоприятно влияют на сохранность растительных пигментов термическая обработка, изменение кислотности среды (рН), контакт плодов с металлами.

Характеристика цвета служит первичной информацией при оценке качества, прежде всего свежести мясных продуктов. Естественный цвет мышечной ткани мяса обусловлен миоглобином (на 90%) и гемоглобином (на 10%). Оба вещества являются сложными белками — хромопротеидами, в состав которых входят простой белок глобин и гем, содержащий двухвалентное железо. Миоглобин аналогично гемоглобину выполняет в организме функции дыхательного белка, являясь промежуточным переносчиком кислорода от гемоглобина к различным участкам тела. В мышечной ткани животного массовая доля миоглобина колеблется от 0,1 до 1 %. Миоглобин имеет пурпурно-красную окраску. Чем больше в мышцах миоглобина, тем ярче их окраска. Под воздействием кислорода воздуха миоглобин окисляется с образованием оксимиоглобина, обеспечивающего светло-красную окраску в течение двух-трех недель хранения мяса в холодильнике после убоя животного. Потемнение мяса на поверхности туши и в местах кровоподтеков объясняется образованием метмиоглобина, в котором железо из двухвалентного переходит в трехвалентное.

Более светлая окраска свинины по сравнению с говядиной обусловлена меньшим (в 2 — 5 раз) содержанием миоглобина. Мышцы молодых животных светлее, чем старых, самцов — темнее, чем самок. Мускулы, имевшие при жизни животных большую физическую нагрузку, имеют более темный цвет, например мышцы шеи темнее, чем длиннейший мускул спины.

Миоглобин и оксимиоглобин в присутствии оксида углерода образуют карбоксимиоглобин — соединение вишнево-красного цвета, которое участвует в формировании окраски мясных изделий холодного копчения.

При взаимодействии с сероводородом в присутствии кислорода миоглобин переходит в сульфомиоглобин желто-зеленого цвета, характеризующий порчу мяса, особенно непотрошеных и полупотрошеных тушек кур, гусей и уток. Сероводород образуется при гнилостной порче белков мяса и птицы. Особенно интенсивное выделение его происходит при разложении остатков пищи в кишечнике птицы. Диффундируя в брюшную полость тушек, сероводород окрашивает кровеносные сосуды в желто-зеленый цвет.

Окраска мяса в кислой или щелочной среде, а также при повышении температуры изменяется. Тепловая обработка сопровождается денатурацией белков и образованием метмиоглобина, что вызывает изменение цвета мяса. Для придания колбасным изделиям устойчивой окраски применяют нитриты натрия и калия, которые добавляют в потолочную смесь или рассол. Нитриты подвергаются гидролизу и другим превращениям с образованием оксида азота, который взаимодействует с миоглобином. В результате реакции получается нитрозомиоглобин, имеющий устойчивый красный цвет. При тепловой обработке он может подвергаться изменениям с образованием денатурированного глобина и нитрозомиохромогена (нитрозомиохрома), придающего копченостям и колбасам коричневые оттенки. Нитриты участвуют также в развитии вкуса и аромата ветчины. Дозы нитритов строго формируются: в вареных, полукопченых и варено-копченых колбасах допускается не более 0,005 % нитритов, в сырокопченых — не более 0,003 %.

Большое разнообразие окраски рыбы объясняется комбинированием хроматофоров — клеток с пигментными зернами, которые находятся в дермисе кожи. Пигменты хроматофоров могут иметь различную окраску: меланофоры окрашены в черный, эритрофоры — в красный, ксантофоры — в желтый цвет. Серебристая окраска рыбы обусловлена кристаллами гуанина, расположенными в коже под чешуей. Гуанин сильно отражает свет.

Цветовые особенности служат систематическими признаками и характеризуют свежесть рыбы. В Мировом океане и пресноводных водоемах обитают более 20 тыс. видов рыбы, около 15 тыс. из них имеют промысловое значение. Окраска тела, боковой линии, плавников является признаком в систематике рыбы. Эритрин и ксантин — нестойкие пигменты, быстро обесцвечиваются, рыба вскоре после вылова теряет прижизненную окраску.

Доброкачественность продукта оценивают по визуальным признакам. Рыба безупречной свежести имеет естественную окраску и блестящую чешую, ярко-красные жабры, выпуклые, с прозрачной роговицей глаза. Для рыбы сомнительной свежести характерны потускневшая, местами сбитая чешуя, серые жабры, порозовевшие, неплотно прилегающие жаберные крышки, впалые тусклые глаза. У несвежей рыбы чешуя тусклая, жабры темно-бурого или серо-зеленого цвета, жаберные крышки розовые или красные раскрыты, глаза ввалившиеся, мутные, анальное кольцо темно-коричневого цвета.

Окраска мышц семейства лососевых (от розовой до ярко-красной), икры лососевых (от оранжево-желтой до оранжево-красной), икры семейства осетровых (от светло-серой до темно-серой и даже черной) и икры большинства частиковых (серовато-желтая) обусловлена липохромами. В икринках рыбы семейства осетровых липохромы расположены под оболочкой, в лососевой икре они растворены в капельках жира.
Б) Вещества, обусловливающие флевор продуктов

Основное место в органолептическом анализе занимает оценка запаха и вкуса. Ощущение запаха возникает посредством органа обоняния, расположенного в носовой полости и возбуждаемого летучими веществами. Вкус продукта в ротовой полости возникает при возбуждении органов вкуса растворимыми веществами. Поскольку носовая полость сообщается с ротовой, первоначальное обонятельное ощущение часто сливается со вкусовым или дополняется новыми оттенками при определении вкуса. Поэтому для многих продуктов запах и вкус оценивают как один общий показатель качества. Для характеристики комплексного ощущения запаха и вкуса применяют термины «вкусность» и «флевор» (более правильное звучание флейвор от английского слова flavour, но реже употребляемое). Понятие флевора может включать и ощущение консистенции продукта, воспринимаемое в ротовой полости. Для описания вкуса и запаха употребляют термины характерный или посторонний. Второе понятие включает не свойственные оцениваемому продукту запах или вкус. Запах продукта может бы гь обусловлен композицией двух, трсх, нескольких или многих низкомолекулярных компонентов (аромат шоколада, чая, кофс, копчения) либо присутствием ключевого вещества. Например, этил-(2-метил-2-фснил) глицидат определяет запах клубники; п-гидроксифснил-3-бутанон придает характерный запах малине; аллилфеноксиацстат — ананасу; 2-мстокси-3-изобутилпиразин — зеленому стручковому перцу; аллилсульфид — чесноку; аллилизотиоцианат — горчице. Другие примеры ключевых веществ, определяющих основной аромат: ванилин — в ванили, коричный альдегил в корице, эвгенол — в гвоздика, карвон в тмине, анетол — в анисе, цинеол — в листьях лавра благородного, ментол — в мяте, цитраль — в лимонах.

Многие продукты имеют композиционный аромат, который развивается при созревании плодов, ягод, овощей либо при технологической обработке 1обжариванис какао-бобов и зерсн кофе, выпечка хлеба, копчение рыбы и мяса, Ферментация листьев чая, жарение мяса, чипсов, арахиса, выдержка коньяка и вина, созревание рыбных консервов, брожение пива, кисломолочных продуктов, сыров и другие процессы). Аромагобразующие композиции могут содержать насколько десятков или сотен веществ.

В помидорах, апельсинах, коньяке обнаружено от 110 до 160 летучих соединений, в пиве, мясе птицы, поджаренном арахисе-180 — 190, изделиях из какао, хлебе, землянике 200 250, коФеот 370 до 500 1по разным источникам) ароматических веществ. По мере развития инструментальных методов исследования увеличивается число обнаруженных в пищевых продуктах и идентифицированных летучих веществ. По опубликованным данным, в коптильном лымс и копченых продуктах найдено более 1000 лету ~их соединений, около 300 из них определены.

Изучение ароматобразующих веществ представляет большие трудности, поскольку их массовая доля в пище чрезвычайно мала, концентрирование летучих соединений может вызвать количественное и качественное изменение запаха. Кроме того, запах создают многие химичсскис компоненты, относящийся к разным классам, для каждого из них необходимы уникальные приемы выделения и подготовки к хромотографическому анализу. Концентраты запаха являются, как правило, сложными смесями, причем многие из ароматобразующих веществ легко вступают в различные реакции.

Сумма ароматобразующих веществ составляет ничтожно малую часть массы продукта. Например, эфирорастворимые вещества, выделснные из конденсата консервов «Шпроты в масле», имеют суммарную массу 1 г в расчетс на 1 кг продукта, а по мере старения консервов и ослабления аромата копчения их массовая доля уменьшается в несколько раз. Выделенные из мяса летучие вещества составляют несколько десятков миллиграммов, а доля их в хлебе, ягодах, фруктах, овощах обычно не превышает 10 мг/кг. Для разделения и идентификации летучих веществ применяют хроматографическис методы в сочетании со спектральными. Широкие возможности открывает газожидкостная хроматография с масс-спектрометрической (ГЖХ-МС) идентификацией компонентов. Современные зарубежные и отечественные исследования с помощью ГЖХ-МС дают новую научную информацию о природе запаха, которая необходима для решения проблемы управления качеством продуктов и разработки имитаторов запаха.

Сложные летучие композиции, выделенные из продуктов, содержат обычно соединения, относящиеся к 4 — 9 и более классам: карбонильные соединения, спирты, кислоты, сложные эфиры, углеводороды и гетероциклические углеводороды, азотистые и серосодержашие соединения, фенолы, лактоны, причем представители первых четырех классов — наиболее постоянные ароматобразующие компоненты. Карбонильная фракция в рыбе составляет около 1/2 общего числа летучих веществ, в кофе, хлебе, мясе птицы, говядине — 1/3 — 1/4 композиций летучих соединений, в землянике и апельсинах — 1/5, в какао-продуктах – 1/7, в пиве — 1/9, в коньяке — 1/10. К эфирам относятся более 1/2, индивидуальных летучих соединений в коньяке и 1/3, в землянике и пиве. В запахе говядиной и птицы преобладают серосодержащие вещества (около 70 соединений). В рыбе присутствуют азотистые летучие соединения.

Наши исследования показывают, что в копченых продуктах более 1/2 массы ароматобразующих компонентов составляют фенолы: гваякол и его производные, фснол и его производные, крезолы, ксиленолы, эвгенол и изоэвгенолы, другие фенольные вещества. В формировании аромата копченостей участвуют также карбонильные соединения, фурфуриловый и другие спирты, фураны, терпены, кислоты.

В результате исследований Р. В. Головни обнаружено, что запах сыров характеризуют преимущественно карбонильные соединения и кислоты, отчасти — органические основания; аромат вареного мяса обусловлен главным образом серосодержащими соединениями, а запах севрюжьей и лососевой икры, филе лососины - аминами и монокарбонильными соединениями.

Для рыбных продуктов, не подвергавшихся копчению, амины являются наиболее важными соединениями в формировании запаха. В рыбе обнаружено около 20 азотистых соединений, в говядине — более 40. Низкие концентрации метиламина обладают запахом, напоминающим запах вареного омара. Во всех видах рыбы присутствуют первичные и вторичные амины (монометиламин, диметиламин и триметиламин), этиламин, пиперидин. Характерный рыбный запах обусловлен триметиламином ТМА, который при массовой доле 3 мг в 100 г придает рыбе селедочный запах. Смесь паров ТМА с воздухом в соотношении 1: 1500 — 1: 8000 имеет отчетливый рыбный запах. Массовая доля ТМА в мышцах пресноволной рыбы составляет примерно 0,5 мг в 100 г. Свежевыловленная пресноводная рыба не имеет характерного рыбного запаха. В мьпццах свежих морских костистых рыб ТМА составляет 4 — 7 мг в 100 г, хрящевых (акула, скат) — до 100 мг в 100 г.

При хранении рыбы количество ТМА возрастает за счет восстановления триметиламиноксида (ТМАО), а также и результате расщепления бетаина, образующегося в организме рыб при биологическом окислении холина. Массовая доля ТМАО составляет (мг/100 г): в пресноводной рыбе от 0 до 20, в морских костистых вилах от 5 до 1000. Интенсивное образование ТМА наблюдается в тот период, когда в тканях рыбы бактериальные процессы преобладают над автоматическими.

Большинство аминов находится в мышцах рыбы в связанном состоянии. Концентрация летучих аминов, определяющих запах рыбы, незначительна над поверхностью продукта, но она непрерывно поддерживается. Существенной особенностью изменений, происходящих в составе аминов при варке рыбы, является образование большого количества диметиламина

Карбонильныс соединения участвуют в формировании запаха рыбы и рыбных продуктов. Интенсивность запаха ароматобразующей композиции значительно снижается при удалении фракции карбонильных соединений. Установлено, что среди карбонилов преобладают альдегиды, значительно меньше кетонов. Полагают, что нормальный запах нежирной рыбы обусловлен наличием низкомолекулярных альдегидов. Запах жирной рыбы определяется продуктами распада жиров. Предшественниками карбонильных соединений являются липиды. Количество карбонильных веществ резко возрастает при созревания соленой рыбья а также в процессе вяления рыбы. Одновременно развивается аромат деликатесной продукции.

Дефекты запахов рыбных продуктов часто связывают с карбонильными соединениями. Например, в карбонильной фракции, вылеленной из рыбных продуктов с неприятным запахом, 60-70 % составляют алканы. Карбонильные соединения вместе с летучими кислотами ответственны за резкий неприятный запах темных мышц жареных сардин. Предшественниками летучих кислот являются липиды и аминокислоты. При хранении рыбы и появлении признаков порчи массовая доля летучих жирных кислот и состав кислотных компонентов резко возрастают. Этот показатель можно использовать при контроле свежести рыбных продуктов.

Термическая обработка, а также порча рыбы сопровождаются накоплением в ней сернистых соединении: сероводорода, диметилсульфида, метилмеркаптана и др. Сероводород составляющая часть запаха стерилизованных рыбных консервов. Диметилсульфид придает неприятный запах подвергающимся бактериальной порче ракообразным — крабам и креветкам. Предшественниками сернистых соединений являются серосодержащие аминокислоты: цистин, цистеин, метионин.

Т.М. Сафронова объясняет появление запаха нефтепродуктов в натуральных лососевых консервах, не вызванного загрязнением рыбы, накоплением в ней диметилсульфида. Он образуется при стерилизации консервов из диметил-в-пропиотстина, попадающего в мышцы из планктона, которым питается кета.

Летучие вещества служат источниками информации о качестве продуктов. Они имеют небольшую молекулярную массу, часто в пределах 100 — 200, как правило, не выше 300.

Раздражая обонятельные рецепторы, ароматобразующие соединения дают человеку сведения о свежести продукта, вызывают аппетит; слабый запах порчи говорит о недоброкачественности пищи. Продукты с высоким содержанием питательных веществ теряют свою ценность, если имеют неприятныс вкус и запах. Отрицательная оценка запаха продукта служит сигналом для человека и часто спасает его от пищевых отравлений.



  1. Колоранты, ароматизаторы, вкусовые добавки и их влияние на здоровье человека

Общие сведения о пищевых красителях.
1   2   3   4   5   6   7   8   9   ...   12

Похожие:

Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Маркетинг»
Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных и практических занятий, рекомендации...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Маркетинг»
Учебно-методический комплекс предназначен для студентов заочной формы обучения, содержит план лекционных и практических занятий,...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Языки и среды реализации web -приложений»
Учебно-методический комплекс предназначен для студентов заочной формы обучения, содержит план лекционных и практических занятий,...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Деньги, кредит, банки»
Учебно-методический комплекс рекомендован к изданию кафедрой «Банковское дело» и утвержден Учебно-методическим советом (протокол...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «уголовное право»
Учебно-методический комплекс по дисциплине «уголовное право» : учебно-методическое пособие / составитель А. М. Жуков. – Тольятти...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине анализ финансово-хозяйственной деятельности
При разработке учебно – методического комплекса учебной дисциплины в основу положены
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Гештальт-психология»
Учебно-методический комплекс предназначен для бакалавров очной формы обучения, содержит учебно-тематический план, учебную программу,...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Электронный бизнес»
Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Программирование на языках высокого уровня (яву)»
Учебно-методический комплекс (умк) составлен на основании гос впо и учебного плана Улгту специальности (направления) 23010165 «Вычислительные...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по мдк 01. 01. Основы управления ассортиментом...
Учебно-методический комплекс предназначен для студентов 2-го курса специальности 100801 «Товароведение и экспертиза качества потребительских...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Инструментальные средства в электронном бизнесе»
Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Инструментальные средства в электронном бизнесе»
Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине «Уголовное право часть особенная»
Учебно–методический комплекс по дисциплине «Уголовное право часть особенная» подготовлены в соответствии с требованиями Государственного...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс дисциплины по дисциплине «Политология»
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методический комплекс по дисциплине опд. В. 01 Современные...
Настоящий учебно-методический комплекс разработан для курса по выбору «стфо: профильное обучение литературе», который изучается студентами...
Учебно-методический комплекс по дисциплине «сенсорный анализ продовольственных товаров» icon Учебно-методическое пособие по дисциплине «Теоретические основы товароведения...
Учебно-методический комплекс составлен в соответствии с требованиями фгос впо по направлению подготовки 100700. 62 «Торговое дело»...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск