Скачать 0.52 Mb.
|
Primary Flight Instrument Systems The primary flight instruments that appear on a PFD are driven by instrument sensor systems that are more sophisticated than conventional instrument systems. The attitude of the aircraft may be measured using microelectronic sensors that are more sensitive and reliable than traditional gyroscopic instruments. These sensors measure pitch, roll, and yaw movements away from a known reference attitude. Aircraft heading may be determined using a magnetic direction sensing device such as a magnetometer or a magnetic flux valve. Attitude and heading systems are typically bundled together as an attitude heading reference system (AHRS), which contains not only the sensors used to measure attitude and heading, but also a computer that accepts sensor inputs and performs calculations. Some AHRSs must be initialized on the ground prior to departure. The initialization procedure allows the system to establish a reference attitude used as a benchmark for all future attitude changes. As in any navigation system, attitude heading reference systems accumulate error over time. For this reason, AHRSs continually correct themselves, using periods of stable flight to make small corrections to the reference attitude. The system’s ability to correct itself can be diminished during prolonged periods of turbulence. Some AHRSs can be reinitialized in flight, while others cannot. The pilot must become familiar with the operating procedures and capabilities of a particular system. Autopilot Vocabulary
Ex.1. Make up the words with the prefix dis- and translate them: Engage, connect, appear, agree, charge, mount Ex.2. Revise some irregular nouns. How is their plural form created? аxis – axes (ось) crisis – crises (кризис) basis – bases (основа) analysis – analyses (анализ) oasis – oases (оазис) hypothesis – hypotheses (гипотеза) Ex.3. Open the brackets. Mind singular or plural form.
Ex.4. Transform the word combinations according to the example. Example: a child who is five years old — a five-year old child 1) a man whose height is six feet; 2) a walk which covers three miles; 3) a program which lasts half an hour; 4) a flight which takes two hours and a half; 5) a hotel having four stars; 6) an autopilot with single axis; 7) an autopilot with three axes. Ex. 5. Translate into English. двухнедельная поездка, книга объемом 174 страницы, 10-серийный фильм, полуторачасовое занятие, молодой человек ростом шесть футов, девятнадцатилетняя девушка, фильм продолжительностью два с половиной часа Ex.6. Match synonyms.
Ex. 7. Match antonyms.
Ex.8. Match the words and their definitions.
Ex.9. Insert the words:
An autopilot is a device used to guide an aircraft without (1) from the pilot. (2) autopilots were only able to maintain a constant heading and altitude, but (3) autopilots are capable of controlling every part of the flight envelope (диапазон полета) (4) . Modern autopilots (5) with the flight management system (FMS). Reading Autopilot Autopilot is an automatic flight control system that keeps an aircraft in level flight or on a set course. It can be directed by the pilot, or it may be coupled to a radio navigation signal. Autopilot reduces the physical and mental demands on a pilot and increases safety. The common features available on an autopilot are altitude and heading hold. The simplest systems use gyroscopic attitude indicators and magnetic compasses to control servos connected to the flight control system. The number and location of these servos depends on the complexity of the system. For example, a single-axis autopilot controls the aircraft about the longitudinal axis and a servo actuates the ailerons. A three-axis autopilot controls the aircraft about the longitudinal, lateral, and vertical axes. Three different servos actuate ailerons, elevator, and rudder. More advanced systems often include a vertical speed and/or indicated airspeed hold mode. Advanced autopilot systems are coupled to navigational aids through a flight director. The autopilot system also incorporates a disconnect safety feature to disengage the system automatically or manually. The autopilots work with inertial navigation systems (INS), global positioning systems (GPS), and flight computers to control the aircraft. In fly-by-wire systems, the autopilot is an integrated component. Answer the questions.
True or false?
TEXTS FOR ANNOTATION Deciding When to Use the FD/Autopilot In addition to learning how to use the FD/autopilot, you must also learn when to use it. Since there are no definitive rules about when an FD/autopilot should or should not be used, you must learn to consider the benefits and disadvantages of using the FD/autopilot in any given situation. Benefits One of the most valuable benefits of using the FD/autopilot is delegating the constant task of manipulating the aircraft’s controls to the equipment, which do nothing other than comply with the pilot’s programming. This allows you more time to manage and observe the entire flight situation. Managing the flight versus actually moving the controls allows more time for: 1. Programming. Especially when flying under IFR, changes to a route are inevitable. Even when the pilot is proficient in using FMS/RNAV, this task requires focusing some attention on the programming task. The FD/autopilot keeps the aircraft on the programmed heading or course and altitude while the pilot makes the necessary changes to the flight plan. If programmed correctly, the aircraft maintains the correct track and altitude. 2. Distracting tasks/workload. Similarly, the FD/autopilot is used to control basic aircraft movement while the pilot focuses attention on tasks such as reviewing charts, briefing and configuring for an instrument approach, updating weather information, etc. The FD/autopilot can also be a great help in other high workload situations, such as flying in a busy terminal area or executing a missed approach in adverse weather conditions. 3. Maintaining autopilot skills. The FD/autopilot’s ability to help manage pilot workload depends heavily on the pilot’s proficiency in using it. Regular practice with the various autopilot functions (especially the approach functions) is essential to develop and maintain the knowledge and skills necessary to maximize its utilization. 4. Emergencies. The FD/autopilot can be extremely useful during an emergency. It can reduce pilot workload and facilitate efforts to troubleshoot the emergency. Disadvantages Disadvantages of using the FD/autopilot include the following: 1. Forgetting to maintain manual flying skills. It is important to practice flying without the FD/autopilot often enough to maintain proficiency in basic flying skills and the instrument cross-check and scan. One common pitfall of advanced avionics is the pilot’s tendency to forget to maintain hard-earned skills for instrument flight. All equipment will fail at some time. The competent pilot is ready and prepared to make a transition to aircraft piloting at any time. 2. Turbulence. The pilot’s operating handbook (POH) and FD/autopilot flight manual supplements for many aircraft discourage or prohibit use of the autopilot’s altitude hold function during moderate or severe turbulence. Some FD/autopilot systems may default or disengage if certain trim or control limits are encountered during turbulent conditions. You should consult the flight manual to ensure the aircraft is not operated outside specified limits. The aircraft’s flightpath and mode indications should always be monitored to ensure what modes are active. 3. Minimum altitude. Autopilots are certified for use above a specified minimum altitude above ground level (AGL). Some higher performance and higher service ceiling aircraft require autopilot control above certain airspeeds and altitudes. The flight manual and operations manual (if any) should be consulted to ensure that the pilot does not operate the aircraft outside specified limits. 4. Possible malfunction. If at any time the pilot observes unexpected or uncommanded behavior from the autopilot, he or she should disengage the autopilot until determination of the cause and its resolution. Most autopilot systems have multiple methods of disengagement; you should be immediately aware of all of them. Also be aware of the methods to cancel the FD display to avoid confusing information. Autopilot software, which is integrated with the navigation systems, is capable of providing control of the aircraft throughout each phase of flight. For example, during take-off the power is set to the correct setting and adjusted as the climb progresses, while the aircraft climbs at the appropriate speed for its mass and ambient conditions. The aircraft then levels at the required altitude or flight level while the power is adjusted to achieve the desired flight characteristics. At the same time, the aircraft follows the flight plan route. On commencing the descent, the power is adjusted and the aircraft descends at the appropriate speed and on the required routing, leveling as required in accordance with the flight clearance until the approach is commenced. If this is to be a Category III ILS approach with Autoland, the autopilot controls the aircraft flight path so that it follows the ILS glide path and localizer, adjusting the power to maintain the appropriate speed and commencing the flare as required to achieve a safe landing without the runway being visible until the final stage of the approach. The autopilot can then guide the aircraft so that it maintains the runway centreline until it stops. At any stage of the flight, the pilot can intervene by making appropriate inputs to the autopilot or the FMS. In an emergency, the pilot can override the autopilot and take over manual control, usually by pressing a switch mounted conveniently on the control column (although alternative means of disengaging the autopilot are available). Modern aircraft have another switch which allows the pilot to change instantly from approach to go-around mode if necessary. Aircraft not fitted with a go-around switch must disconnect the autopilot and fly the missed approach manually. The safe and efficient operation of automatic systems relies on clear understanding of the capabilities and the design philosophy of the equipment. Failure to do so has resulted in several fatal accidents. Autoflight of Airbus A-340 The A340 Flight Management and Guidance System (FMGS) is the brain of the aircraft and its autoflight/prediction capabilities. Dual Flight Management and Guidance Computers (FMGC) provide flight and navigation data to the pilots, and perform many traditional pilot functions. Each FMGC has its own database divided into two parts. The first is a non-modifiable database tailored for the customer airline and its area of operations. Standard navigation data, routes, waypoints, airport, and alternate airport data is included, and is updated on a 28-day cycle. The second database is user-modifiable, and allows the pilots to store up to 20 waypoints, ten runways, 20 navaids, and five routes. During preflight cockpit preparation, the crew enters the departure runway, departure procedure, enroute waypoints, arrival, approach, landing runway, missed approach, and route to the alternate airport. If the route is stored in the aircraft database, route generation is greatly simplified. The FMGCs then generate optimum lateral and vertical flight profiles and predicted progress along the entire flight path. Once the flight plan and aircraft performance data is entered into the MCDU and verified, the FMGS has all of the necessary data to guide the aircraft along the programmed route of flight. Once airborne, the FMGS - through the autopilot - will acquire and track the Managed or Selected flight path; climb, cruise, and descend at preset speeds; and fly an instrument approach to an autolanding if necessary. If poor visibility results in a missed approach, the autopilot will also fly the missed approach procedure; all the flight crew must do is move the thrust levers to the MCT detent and reconfigure the aircraft. The autopilot also controls nosewheel steering to maintain the runway centerline after an autolanding. The automation built into the A340 is complex, and a unique system had to be devised to enable the pilots to observe which autoflight modes are armed or active. The solution is called the Flight Mode Annunciator (FMA), and is built into the top of the Primary Flight Display (PFD). Five rows display the armed or engaged status of the Autothrust, lateral and vertical modes of the autopilot, the flight director, and approach capability. The multicolored alphanumeric display gives the pilot a quick look ability to ensure the proper modes are armed or active. |
Федерального государственного бюджетного образовательного учреждения... ... |
Федеральное агентство воздушного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный... |
||
Отчет о самообследовании деятельности федерального государственного... Деятельности федерального государственного бюджетного образовательного учреждения высшего профессионального образования |
П. Ф. Еромасова (колледж) филиал Федерального государственного бюджетного... П. Ф. Еромасова (колледж) – филиал Федерального государственного бюджетного образовательного учреждения высшего образования |
||
П. Ф. Еромасова (колледж) филиал Федерального государственного бюджетного... П. Ф. Еромасова (колледж) – филиал Федерального государственного бюджетного образовательного учреждения высшего образования |
П. Ф. Еромасова (колледж) филиал Федерального государственного бюджетного... П. Ф. Еромасова (колледж) – филиал Федерального государственного бюджетного образовательного учреждения высшего образования |
||
Отчет о самообследовании деятельности Федерального государственного... ... |
Федеральное государственное образовательное учреждение высшего профессионального... Пособие по подготовке к лабораторной работе «Пилотажно-навигационные комплексы. Изучение и исследование системы траекторного управления... |
||
Отчет о самообследовании деятельности федерального государственного... Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования |
Отчет о самообследовании деятельности федерального государственного... Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования |
||
Программ а стратегического развития Федерального государственного... Полное наименование вуза – федеральное государственное бюджетное образовательное учреждение высшего профессионального образования... |
Федеральное государственное образовательное учреждение высшего профессионального... В 75 Технология и организация перевозок. Часть I. Организация продажи перевозок, коммерческого обслуживания в аэропорту и взаиморасчетов:... |
||
Ульяновский государственный технический университет Положением о закупке товаров, работ, услуг федерального государственного бюджетного образовательного учреждения высшего образования... |
Отчет государственного образовательного учреждения высшего профессионального образования Московский государственный институт электронной техники (технический университет) |
||
Учебное пособие по чтению Для студентов заочного отделения 080502, 080507 Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный... |
Об управлении комплексной безопасности Укб является самостоятельным структурным подразделением Федерального государственного бюджетного образовательного учреждения высшего... |
Поиск |