Скачать 4.54 Mb.
|
Методы исследования структуры металлов и сплавов: а.Макроскопический анализ. б.Микроскопический анализ. в.Рентгеноструктурный анализ и рентгеновская дефектоскопия. а.Макроскопический анализ. Различают макроструктуру, микроструктуру и тонкую структуру. Строение металлов и сплавов, видимое невооружённым глазом или при небольших увеличениях с помощью лупы (до 30 раз), называется макроструктурой. Макроструктура изучается путём макроанализа. Так как металлы -- вещества непрозрачные, то их строение изучают в изломе или специально приготовленных образцах -- макрошлифах. Образец вырезают из определённого места, в определённой плоскости в зависимости от того, что подвергают исследованию -- литьё, поковку, штамповку, прокат, сварную или термически обработанную деталь -- и что требуется выявить и изучить - первичную кристаллизацию, дефекты, нарушающие сплошность металла, неоднородность структуры….. . Поэтому образцы вырезают из одного или нескольких мест слитка, заготовки или детали как в продольном, так и в поперечном направлениях. Поверхность образца (темплета) выравнивают на наждачном круге, затем шлифуют. После шлифования темплет травят в специальных реактивах, которые по-разному растворяют структурные составляющие и растравливают дефекты. Макроанализ шлифов выявляет различные пороки в слитках и отливках (усадочные раковины, газовые пузыри, трещины…); вид излома (вязкий, хрупкий); величину, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; расположение волокон в кованных и штампованных заготовках; трещины, возникающие при обработке давлением или термической обработке, дефекты в сварных швах. б.Микроскопический анализ. Более тонким методом исследования структуры и пороков металлов является микроанализ, т. е. изучение структуры металлов при больших увеличениях с помощью металлографического микроскопа. Микроструктурный анализ – изучение поверхности при помощи световых микроскопов. Увеличение – 50…2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм. Металлографический микроскоп рассматривает металл в отражённом свете, чем и отличается от биологического микроскопа, где предмет рассматривается в проходящем свете. Значительно большее увеличение можно получить при помощи электронного микроскопа, в котором лучи света заменены потоком электронов (увеличение достигается при этом до 100 000 раз). Просвечивающие микроскопы. Поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте. Различают косвенные и прямые методы исследования. При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающую рельеф микрошлифа, для предупреждения вторичного излучения, искажающего картину. При прямом методе изучают тонкие металлические фольги, толщиной до 300 нм, на просвет. Фольги получают непосредственно из изучаемого металла. Растровые микроскопы. Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов. Для изучении микроструктуры также приготавливаются шлифы -- микрошлифы, но после шлифования дополнительно производится полирование до зеркального блеска, затем производят травление шлифа. Микроанализ позволяет выявить:
в.Рентгеноструктурный анализ и рентгеновская дефектоскопия. Рентгеновские лучи имеют ту же природу, что и световые лучи, т. е. представляют собой электромагнитные колебания, но длина их волн другая: световых лучей от 7,5 х10-5 до 4 х10-5 см, рентгеновских -- от 2 х10-7 до 10-9 см. Рентгеновские лучи получаются в рентгеновских трубках в результате торможения электронов при их столкновении с поверхностью какого-либо металла. При этом кинетическая энергия электронов превращается в энергию рентгеновских лучей. Рентгеноструктурный анализ основан на способности атомов в кристаллической решётке отражать рентгеновские лучи. Отражённые лучи оставляют на фотопластинке (рентгенограмме) группу пятен или колец. По характеру расположения этих колец (пятен) определяют тип кристаллической решётки, а также расстояние между атомами (положительными ионами) в решётке. Рентгеновское просвечивание основано на способности рентгеновских лучей проникать в глубь тела. Благодаря этому можно, не разрезая металлических изделий, увидеть на рентгеновском снимке различные внутренние дефекты металла: трещины, усадочные раковины, пороки сварки… . Методы регистрации пороков в материале основаны на том, что рентгеновские лучи, проходя через металл, частично поглощаются. При этом менее плотные части металлического изделия (участки с пороками) поглощают лучи слабее, чем плотные (сплошной металл). Это приводит к тому, что на рентгеновском снимке участки с пороками будут иметь тёмные или светлые пятна на фоне сплошного металла. Современные рентгеновские аппараты позволяют просвечивать стальные изделия на глубину до 60 – 100 мм. Для выявления дефектов в металлических изделиях большой толщины начали применять гамма-лучи. Природа гамма-лучей аналогична рентгеновским, но длина волны их меньше. Благодаря большой проникающей способности гамма-лучей ими можно просвечивать стальные детали толщиной до 300 мм. Контрольные вопросы.
Задание: Из перечисленных ниже твёрдых веществ назовите вещества, имеющие определённую температуру плавления: свинец, стекло, медь, янтарь, клей, магний, воск, железо, канифоль, титан. К каким телам вы их отнесёте?
Формирование структуры литых материалов. План:
Сущность процессов кристаллизации металлов и сплавов. Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном. Возможен переход из одного состояния в другое, если новое состояние в новых условиях является более устойчивым, обладает меньшим запасом энергии. С изменением внешних условий свободная энергия изменяется по сложному закону различно для жидкого и кристаллического состояний. Характер изменения свободной энергии жидкого и твердого состояний с изменением температуры показан на рис. 3.1. Рис.3.1. Изменение свободной энергии в зависимости от температуры В соответствии с этой схемой выше температуры ТS вещество должно находиться в жидком состоянии, а ниже ТS – в твердом. При температуре равной ТS жидкая и твердая фаза обладают одинаковой энергией, металл в обоих состояниях находится в равновесии, поэтому две фазы могут существовать одновременно бесконечно долго. Температура ТS – равновесная или теоретическая температура кристаллизации. Для начала процесса кристаллизации необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Это возможно при охлаждении жидкости ниже температуры ТS. Температура, при которой практически начинается кристаллизация называется фактической температурой кристаллизации. Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением, которое характеризуется степенью переохлаждения (): Степень переохлаждения зависит от природы металла, от степени его загрязненности (чем чище металл, тем больше степень переохлаждения), от скорости охлаждения (чем выше скорость охлаждения, тем больше степень переохлаждени). Рассмотрим переход металла из жидкого состояния в твердое. При нагреве всех кристаллических тел наблюдается четкая граница перехода из твердого состояния в жидкое. Такая же граница существует при переходе из жидкого состояния в твердое. Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии. Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура. Кривая охлаждения чистого металла представлена на рис. 3.2. Рис.3.2. Кривая охлаждения чистого металла – теоретическая температура кристаллизации; . – фактическая температура кристаллизации. Процесс кристаллизации чистого металла: До точки 1 охлаждается металл в жидком состоянии, процесс сопровождается плавным понижением температуры. На участке 1 – 2 идет процесс кристаллизации, сопровождающийся выделением тепла, которое называется скрытой теплотой кристаллизации. Оно компенсирует рассеивание теплоты в пространство, и поэтому температура остается постоянной. После окончания кристаллизации в точке 2 температура снова начинает снижаться, металл охлаждается в твердом состоянии. Механизм и закономерности кристаллизации металлов. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис. 3.3. Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию. Рис.3.3. Зависимость энергии системы от размера зародыша твердой фазы Механизм кристаллизации представлен на рис.3.4. Рис.3.4. Модель процесса кристаллизации Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело. Качественная схема процесса кристаллизации может быть представлена количественно кинетической кривой (рис.3.5). Рис. 3.5. Кинетическая кривая процесса кристаллизации Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться. Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров. В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рис. 3.6). Рис. 3.6. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации. При равновесной температуре кристаллизации ТS число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит. Если жидкость переохладить до температуры, соответствующей т.а, то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая). При переохлаждении до температуры соответствующей т.в – мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая). Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых. Условия получения мелкозернистой структуры Стремятся к получению мелкозернистой структуры. Оптимальными условиями для этого являются: максимальное число центров кристаллизации и малая скорость роста кристаллов. Размер зерен при кристаллизации зависит и от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации – оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося металла. Стенки изложниц имеют неровности, шероховатости, которые увеличивают скорость кристаллизации. Мелкозернистую структуру можно получить в результате модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы, По механизму воздействия различают:
Особенности строения металлического слитка Схема стального слитка, данная Черновым Д.К., представлена на рис.3.7. Рис. 3.7. Схема стального слитка Слиток состоит из трех зон:
Кристаллизация корковой зоны идет в условиях максимального переохлаждения. Скорость кристаллизации определяется большим числом центров кристаллизации. Образуется мелкозернистая структура. Жидкий металл под корковой зоной находится в условиях меньшего переохлаждения. Число центров ограничено и процесс кристаллизации реализуется за счет их интенсивного роста до большого размера. Рост кристаллов во второй зоне имеет направленный характер. Они растут перпендикулярно стенкам изложницы, образуются древовидные кристаллы – дендриты (рис. 3.8). Растут дендриты с направлением, близким к направлению теплоотвода. Рис.3.8. Схема дендрита по Чернову Д.К. Так как теплоотвод от незакристаллизовавшегося металла в середине слитка в разные стороны выравнивается, то в центральной зоне образуются крупные дендриты со случайной ориентацией. Зоны столбчатых кристаллов в процессе кристаллизации стыкуются, это явление называется транскристаллизацией. Для малопластичных металлов и для сталей это явление нежелательное, так как при последующей прокатке, ковке могут образовываться трещины в зоне стыка. В верхней части слитка образуется усадочная раковина, которая подлежит отрезке и переплавке, так как металл более рыхлый (около 15…20 % от длины слитка) Методы исследования металлов: структурные и физические Металлы и сплавы обладают разнообразными свойствами. Используя один метод исследования металлов, невозможно получить информацию о всех свойствах. Используют несколько методов анализа. Структурные методы исследования. Применяют макроскопический и микроскопический анализ, рентгеноструктурный анализ. |
Конспект лекций Ш 39 Метрология, стандартизация, сертификация: Конспект лекций / О. А. Шейфель; Кемеровский технологический институт пищевой промышленности.... |
Конспект лекций для студентов всех форм обучения специальности 080110... Налоги и налогообложение: Конспект лекций / Составитель Н. А. Леончик. – Кемерово, 2006. – 80 с |
||
Технические средства автоматизации конспект лекций Конспект лекций предназначен для студентов дневной, вечерней, заочной и дистанционной форм обучения по специальности 220301 «Автоматизация... |
Конспект лекций Владимир 2010 Министерство образования Российской... Автоматизированные системы бухгалтерского и управленческого учета. Часть 1: Конспект лекций / Владим гос ун-т; Сост.: Д. Н. Васильев... |
||
Конспект лекций лаконично раскрывает содержание и структуру учебной... Безопасность жизнедеятельности : конспект лекций для студентов очной и заочной форм обучения / сост. В. М. Домашко; Южный федеральный... |
Конспект лекций по дисциплине для специальности 080101. 65 «Экономическая безопасность» Информационные системы в экономике: конспект лекций по дисциплине для обучающихся по специальности 080101. 65 «Экономическая безопасность»... |
||
Конспект лекций по дисциплине «Научные основы производства продуктов питания» Конспект лекций по дисциплине «Научные основы производства продуктов питания» для студентов кафедры «Технология и организация общественного... |
Конспект лекций по дисциплине вгипу, 2009 Конспект лекций по дисциплине... Учебное пособие предназначено для студентов различных специальностей, изучающих дисциплину “Автоматизированные системы управления... |
||
Конспект лекции по теме: Форматы команд, способы адресации операндов.... Задание: Самостоятельно в тетради составить конспект лекции по теме: Форматы команд, способы адресации операндов |
Кафедра фармации Органические лекарственные препараты. Ароматические... Органические лекарственные препараты. Ароматические соединения. Краткий конспект лекций – Нижний Новгород: Изд-во Нижегородской государственной... |
||
Конспект-лекций основы социальной работы 44. 05. 01 «Педагогика и... Мельников С. В. Основы социальной работы: Конспект-лекций по специальности 44. 05. 01 «Педагогика и психология девиантного поведения»... |
Конспект лекций по курсу «Делопроизводство» составлен на основе базовой... Конспект лекций по курсу «Делопроизводство» составлен на основе базовой программы «Делопроизводство и документационное обеспечение... |
||
Конспект лекций (Гилевский Ю. Х.) по высшей геодезии за 3 курс обучения... Конспект лекций (Гилевский Ю. Х.) по высшей геодезии за 3 курс обучения в Санкт-Петербургском техникуме Геодезии и картографии. Примерно... |
«Материаловедение. Технология конструкционных материалов» По дисциплине «Материаловедение. Технология конструкционных материалов» Для специальности 270102. 65 «Промышленное и гражданское... |
||
Рабочая программа учебной дисциплины оп. 04 Материаловедение Рабочая программа учебной дисциплины оп. 04 Материаловедение разработана в соответствии с фгос по специальности спо 190631 «Техническое... |
Конспект лекций учебной дисциплины: «Производственный менеджмент» Тема Методы сетевого планирования и управления в подготовке производства продукта |
Поиск |