Скачать 0.81 Mb.
|
Лазерная рефлексотерапияПоследнее десятилетие было ознаменовано широким внедрением лазеров в рефлексотерапию. Значительное распространение получил метод лазеропунктуры (ЛП), сущность которого состоит в стимуляции точек акупунктуры путем накожного воздействия низкоинтенсивным лазерным излучением (ЛИ). Наиболее важным достоинством методов лазерной рефлексотерапии (ЛРТ) является наличие мощного биостимулирующего действия на клеточном и тканевом уровнях, что в значительной мере повышает эффективность лечения широкого круга заболеваний по сравнению с традиционной акупунктурой. ЛП позволяет избежать осложнений, связанных с повреждением покровов тела, прежде всего инфекционного генеза (СПИД, вирусный гепатит и т.п.). Неинвазивность, безболезненность воздействия расширяет показания к применению, в частности, у лиц пожилого возраста, ослабленных больных, детей, гиперсенситивных личностей, отличающихся неадекватной, чрезмерной реакцией на ноцицептивное раздражение. Существенным является также сокращение затрат времени на проведение одной процедуры (до 4-5 минут), что значительно повышает производительность работы врача. ЛИ имеет электромагнитную природу, его фундаментальными свойствами являются монохроматичность и когерентность. Монохроматичность характеризует постоянство длины волны, а когерентность - неизменность разности фаз по всему фронту излучения. Монохроматичность и когерентность обусловливают высокую энергетическую плотность и малую расходимость пучка ЛИ Источниками ЛИ служат оптические квантовые генераторы (ОКГ), лазеры (англ. абрев. laser - "усиление света путем вынужденного излучения"). Они подразделяются по "активному веществу" на твердотельные, газовые, жидкостные и полупроводниковые. Механизм генерации ЛИ в наиболее общем виде включает два этапа: 1) переход квантовых систем активного вещества в возбужденное состояние под воздействием энергии накачки (оптической, электрической, химической); 2) индуцированный переход на нижний энергетический уровень с излучением фотона. Поскольку переход осуществляется с одного и того же вышележащего энергетического уровня на один и тот же нижележащий, то ЛИ имеет свойство монохроматичности и когерентности. Резонансная система зеркал усиливает излучение, обеспечивая многократный пробег фотонов через активное вещество. В зависимости от физических свойств активного вещества и особенностей энергетической накачки ЛИ генерируется либо в импульсном, либо в непрерывном режимах. В последнее время в рефлексотерапии широкое применение находят полупроводниковые инфракрасные лазеры с длиной волны излучения от 850 нм до 1400 нм. Терапевтическое действиеНакоплен обширный материал, объективно доказывающий наличие полимодального биологического действия инфракрасного ЛИ с длиной волны 850 нм и выше. Различают непосредственное биологическое воздействие и рефлекторные эффекты лазерной стимуляции. Биофизический механизм непосредственного воздействия связывают с избирательным поглощением ЛИ молекулярными структурами, которые вследствие этого изменяют свое энергетическое состояние. Своеобразными молекулярными акцепторами ЛИ являются: 1) нуклеиновые кислоты - ДНК и РНК; 2) ферменты; 3) молекулы мембран - клеточных, митохондриальных, лизосомальных. Лазерная стимуляция указанных систем обусловливает активацию биосинтетических и окислительно-восстановительных процессов (P.Pank et.al,1984). Рефлекторные эффекты лазерной стимуляции по механизму являются общими для всех методов рефлексотерапии (Д.М.Табеева, 1980; Е.Л.Мачерет, И.З.Самосюк, 1989). Они обусловлены стимулирующим действием инфракрасного ЛИ на рецепторный аппарат, в частности, на терморецепторы. Обобщая данные литературы и результаты собственных исследований, можно выделить следующие основные виды терапевтического действия ЛРТ: стимуляция процессов регенерации в тканях; противовоспалительное; иммуномодулирующее; десенсибилизирующее; вазоактивное; вегетотропное (симпатолитическое, ваголитическое); психотропное (седативное, антидепрессивное); гемопоэтическое (эритропоэтическое, лейкопоэтическое); гипокоагулирующее; аналгезирующее. Основные показания
Наибольший эффект от назначения ЛРТ достигается при лечении хронических, вялотекущих заболеваний, в патогенезе которых ведущее значение принадлежит воспалению, дисфункциям иммунной системы, нейротрофическим нарушениям в тканях и органах. Нецелесообразно применение ЛРТ для получения симптоматических рефлекторных эффектов, таких как, купирование острейшего болевого синдрома, приступа бронхиальной астмы, вегетативно-сосудистого пароксизма и т.п. Противопоказания
Методика лазеропунктурыТочки воздействия определяются исходя из принятых в рефлексотерапии принципов для каждой нозологической формы. Особенностью является больший приоритет сегментарных и локальных точек, расположенных в проекции очагов поражения. Запрещается облучать рефлекторные зоны в области пигментных пятен, невусов, ангиом и т.п., а также в проекции орбит. В процессе отбора больных рекомендуется проводить клинический анализ крови, исследование свертывающей - противосвертывающей системы, анализ мочи. До и после сеанса показано измерение АД. Во время процедуры больной находится в положении лежа или сидя. Намеченные для воздействия зоны стимулируются последовательно. Кожа в проекции точки предварительно обезжиривается этиловым спиртом. Стимуляцию следует производить контактно, при этом необходимо осуществлять умеренное давление на область воздействия, так как это с одной стороны увеличивает глубину проникновения ЛИ, а с другой оказывает собственное стимулирующее действие на рецепторы. Лазерное облучение точек акупунктуры осуществляется как в непрерывном, так и в импульсном режиме излучения. Общая доза облучения всех зон на один сеанс не выше 25 Дж. При частотной модуляции лазерного излучения учитывают, что низкие частоты (1-30 Гц) оказывает тонизирующий эффект, а высокие (80-150 Гц) - седативный. В каждом конкретном случае доза строго индивидуализируется. Например, для достижения одинакового эффекта на более светлые участки кожи нужно увеличить дозу, на темные - уменьшить. В течение одного сеанса следует облучать не более 10-12 точек. Сеансы лечения обычно проводятся ежедневно или через день, на курс 10-15-25 сеансов. При необходимости 2 курс лечения можно назначить через 10-15 дней, а третий не ранее, чем через месяц. При отсутствии положительной динамики в состоянии пациента на исходе второго курса лечения дальнейшее проведение ЛП нецелесообразно. Методика лазероакупунктурыСущность лазероакупунктуры заключается в воздействии на глубоко расположенные ткани (костные, фиброзные и мышечные) путем комбинированной механической и лазерной стимуляции, в связи с указанным полное название метода - остеомиофасциальная лазероакупунктура (ОМФЛА). Особенностью ОМФЛА является воздействие не на традиционные точки акупунктуры, а на так называемые "триггерные" пункты в костных, фиброзных и мышечных тканях. Определение зон воздействия производится по критерию локальной пальпаторной болезненности. При необходимости данный критерий может быть объективизирован методом термографии на основании выделения участков локальной гипертермии. Зоны воздействия выявляются в проекции позвоночно-двигательных сегментов, костно-связочных и мышечных структур пояса верхних или нижних конечностей. Предпочтительными для стимуляции являются зоны, пальпация которых вызывает отраженные болевые ощущения. При проведении ОМФЛА за один сеанс используется не более четырех, причем приоритетным является воздействие на участки с местными структурными нарушениями по типу узелков эластической или плотной консистенции. Внутрикостная стимуляция осуществляется соответственно остистым отросткам позвонков, что диктуется необходимостью получения распространенного трофического эффекта в пределах позвоночно-двигательных сегментов. Внутрикостная пункция производится посредством инъекционной иглы с мандреном, насаженной на шприц (игла типа "Рекорд" для внутривенных вливаний). Техника пункции заключается в быстром проколе кожи, после чего медленными вращательными движениями достигается губчатое вещество кости. Критерием достижения необходимой глубины служит возникновение у больного выраженного ощущения "распирания", "наполнения", что обусловливается механическим раздражением внутрикостных баррорецепторов. Глубина пункции в зависимости от конкретных топографо-анатомических соотношений составляет от 0,3 до 10 мм. Следует подчеркнуть малую травматичность подобного воздействия, поскольку остистые отростки, обладающие незначительным по толщине слоем компактного вещества, пунктируются тонкой иглой, что с учетом значительных регенерационных возможностей костной ткани не обусловливает актуального морфологического дефекта. Болезненность манипуляции не превосходит болезненности широко применяемых в неврологии методов инъекционной терапии, в частности, разнообразных блокад местными анестетиками. В проекции других костных выступов осуществляется периостальная пункция с целью непосредственного лазерного облучения участков прикрепления связок, сухожилий и мышц, являющихся наиболее уязвимыми для возникновения дистрофических нарушений. Соответственно зонам мышечной болезненности производится внутримышечный укол с повреждением узелков, глубина которого определяется расположением указанных образований. После достижения необходимой глубины, мандрен удаляется и в просвет иглы вводится гибкий стерильный световод малого диаметра (0,5-0,6 мм). Доза излучения не более 25 Дж/сеанс. С целью профилактики вирусных инфекций (гепатит В, СПИД) желательно использование гибких световодов индивидуального применения. Курс лечения состоит из 3-6 сеансов, проводимых с интервалом в 1-2 дня. Следует подчеркнуть, что соблюдение указанного интервала между сеансами является весьма существенным, поскольку ежедневные процедуры приводят к некоторому обострению болей. При необходимости второй курс лечения можно провести через месяц после первого. Наконец, для того, чтобы иметь представление о лазерном оборудовании, применяемом в медицине, рассмотрим и этот вопрос. СОВРЕМЕННЫЕ ИСТОЧНИКИ ИЗЛУЧЕНИЯ И АППАРАТУРА ДЛЯ НИЗКОИНТЕНСИВНОЙ ЛАЗЕРНОЙ ТЕРАПИИ С незапямятных времен Солнце воспринималось как источник света, тепла и жизни. Использование естественного света в лечебных целях вероятно также старо, как само человечество. Солнечный свет и вода всегда были для человека максимально близкими и доступными лечебными средствами. Дошедшее до нас первое упоминание об осознанном использовании солнечных лучей в профилактических и лечебных целях относится к временам правления в Египте фараона Аменхотепа IV (предположительно с 1375 по 1358 годы до н.э.). О целебных свойствах Солнца есть сообщения в трудах: Геродота, Гиппократа, Аулия Корнелия Цельса, Клавдия Галена, Абу Али ибн Сины и др. Можно сказать, что Солнце - первый источник излучения в фототерапии, который имеет широкий спектральный диапазон, нестабильную мощность излучения, нестабильную степень поляризации. В конце прошлого века появились искусственные источники света, которые имели более узкий спектральный диапазон, стабильную мощность излучения, благодаря чему получили значительно более выраженный и устойчивый лечебный эффект, чем при солнцелечении. К тому же стало возможным проведение исследований явлений фотобиоактивации с появлением более контролируемого средства воздействия. В первую очередь успехи светолечения связывают с именем датского физиотерапевта Нильса Рюберга Финсена (N.R.Finsen, 1860-1904), предложившего концентрировать солнечные лучи, одновременно исключая видимую и инфракрасную части спектра для лечения туберкулеза кожи (волчанки), а также лечить кожную оспу красным светом. В 1903 г. за разработку нового метода лечения ему была присуждена Нобелевская премия в области медицины [10]. Вторая половина XX столетия ознаменовалась появлением лазеров - источников света с новыми свойствами, такими, как: монохроматичность, когерентность, поляризованность и направленность. Этот факт не прошел незамеченным, и в середине 60-х годов началось изучение фотобиоэффектов, вызванных низкоинтенсивным лазерным излучением (НИЛИ). Одним из первых был вопрос о сопоставлении монохроматичного излучения He-Ne лазера и широкополосного света красной лампы. В.М.Инюшин [6, 7] и другие исследователи убедительно показали преимущества лазерного излучения как средства терапевтического воздействия, что во многом и определило дальнейшее развитие низкоинтенсивной лазерной терапии, как самостоятельного направления физиотерапии. Ниже приводится классификация лазеров по различным параметрам [4, 8, 12, 13, 15, 16]. 1. Физическое (агрегатное) состояние рабочего вещества лазера. газовые (гелий-неоновые, гелий-кадмиевые, аргоновые, углекислотные и др.); эксимерные (аргон-фторовые, криптон-фторовые и др.); твердотельные (стекло, алюмоитриевый гранат и др., легированные различными ионами); жидкостные (органические красители); полупроводниковые (арсенид-галлиевые, арсенид-фосфид-галлиевые, селенид- свинцовые и др.). 2. Способ возбуждения рабочего вещества. оптическая накачка; накачка за счет газового разряда; электронное возбуждение; инжекция носителей заряда; тепловая; химическая реакция; другие. 3. Длина волны излучения лазера. Если спектр излучения сосредоточен в очень узком интервале длин волн (менее 3нм), то принято считать излучение монохроматичным и в его технических данных указывается конкретная длина волны, соответствующая максимуму спектральной линии. Длина волны излучения определяется материалом рабочего вещества, но может изменяться в небольших пределах, например, от температуры. Одинаковые длины волн могут генерировать разные типы лазеров, например, около l =633нм работают лазеры: He-Ne, лазеры на красителях, на парах золота, полупроводниковые (AlGaInP). 4. По характеру излучаемой энергии различают непрерывные и импульсные лазеры. Не следует смешивать понятия импульсный лазер и лазер с модуляцией непрерывного излучения, поскольку во втором случае мы получаем по сути дела прерывистое излучение различной частоты и формы но с максимальной мощностью не превышающей значение в непрерывном режиме или превышающей ее незначительно. Импульсные же лазеры обладают большой мощностью в импульсе, достигающей для некоторых типов 107 Вт и более, но длительность импульса чрезвычайно мала, а средняя мощность за период невелика. 5. Очень важной является характеристика средней мощности лазеров. более 103 Вт - высокомощные лазеры; менее 10-1 Вт - лазеры малой мощности; Промежуточные значения нас не очень интересуют с точки зрения рассматриваемого материала. К лазерам для медицины нужно подходить с точки зрения оказываемого ими воздействия на биологический объект. В некоторых случаях "малая мощность" - 100 мВт может быть очень даже большой. В литературе по лазерной терапии [1] предлагается низкоинтенсивное лазерное излучение условно подразделять на "мягкое" - до 4 мВт/см? , "среднее" - от 4 до 30 мВт/см? и "жесткое" - более 30 мВт/см? . В лечебном процессе "мягкое" излучение используют для рефлексотерапии по точкам классической акупунктуры, "среднее" - для воздействия на поверхностно расположенные патологические очаги, либо на область проекции тех или иных органов." Жесткое" низкоинтенсивное излучение, в частности, гелий-неонового лазера, рекомендуют использовать в стоматологии при лечении некоторых заболеваний полости рта и зубов [11]. Однако открытым остается вопрос в отношении энергетической классификации терапевтических импульсных лазеров, который необходимо рассматривать комплексно с позиции биологического действия лазерного излучения, учитывая не только среднюю выходную мощность, но и уровень импульсной мощности, длительность импульса и время воздействия лазерного излучения. 6. По степени опасности генерируемого излучения для обслуживающего персонала лазеры подразделяются на четыре класса: Класс 1. Лазерные изделия безопасные при предполагаемых условиях эксплуатации. Класс 2. Лазерные изделия, генерирующие видимое излучение в диапазоне длин волн от 400 до 700 нм. Защита глаз обеспечивается естественными реакциями, включая рефлекс мигания. Класс 3А. Лазерные изделия безопасные для наблюдения незащищенным глазом. Для лазерных изделий, генерирующих излучение в диапозоне длин волн от 400 до 700 нм, защита обеспечивается естественными реакциями, включая рефлекс мигания. Для других длин волн опасность для незащищенного глаза не больше чем для класса 1. Непосредственное наблюдение пучка, испускаемого лазерными изделиями класса 3А с помощью оптических инструментов (например, бинокль, телескоп, микроскоп), может быть опасным. Класс 3В. Непосредственно наблюдение таких лазерных изделий всегда опасно. Видимое рассеянное излучение обычно безопасно. Примечание - Условия безопасного наблюдения диффузного отражения для лазерных изделий класса 3В в видимой области: минимальное расстояние для наблюдения между глазом и экраном - 13 см, максимальное время наблюдения - 10 с. Класс 4. Лазерные изделия, создающие опасное рассеянное излучение. Они могут вызвать поражение кожи, а также создать опасность пожара. При их использовании следует соблюдать особую осторожность. Эта градация определена ГОСТ Р 50723-94 Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий [3]. 7. Для осуществления лечебного процесса часто важной является такая характеристика лазера, как угловая расходимость луча. Измеряется в градусах, угловых минутах (1/60 градуса), угловых секундах (1/60 минуты) или радианах (1° = p /180 > 0,0175 рад). Наименьшую расходимость имеют газовые лазеры - около 30 угловых секунд (> 0,15 мрад). Расходимость луча твердотельных лазеров - около 30 угловых минут (> 10 мрад). у полупроводниковых лазеров: в плоскости, параллельной p-n - перехода - от 10 до 20 градусов (в зависимости от типа лазера); в плоскости, перпендикулярной p-n - переходу - около 40 градусов. 8. Коэффициент полезного действия (КПД) лазера. Различают теоретически возможный (квантовый выход) и реальный (полный) КПД. Последний определяется отношением мощности излучения лазера к мощности, потребляемой от источника накачки. У газовых лазеров полный КПД составляет 1-20% (гелий-неоновый - до 1%, углекислотный 10-20%,), у твердотельных - 1-6%, у полупроводниковых - 10-50% (в отдельных конструкциях до 95%). Становится ясно, почему только полупроводниковые лазеры можно применять в автономной и портативной терапевтической аппаратуре. Газовые лазеры многообразны по типу применяемой среды: He-Ne, СO, CO2, N, Ar и другие. Этим определяется очень широкий диапазон длин волн, на которых получена генерация. Накачка осуществляется путем создания тлеющего разряда в трубке, что возможно лишь при очень высоких питающих напряжениях. Из всех типов лазеров обладают самой минимальной шириной спектральной линии - до 10-7 нм. Эксимерные лазеры являются разновидностью газовых лазеров, работают на соединениях, которые могут существовать только в возбужденном состоянии - галогенов и инертных газов (KrF, ArF и др.). Излучают в ультрафиолетовой области спектра. Твердотельные лазеры - это в основном алюмоитриевый гранат (АИГ), легированный ионами редкоземельных металлов (Nd, Er, Ho и др.). Собственно, эти ионы и являются источником излучения, а гранат лишь матрицей для их правильного расположения в пространстве. Твердотельные лазеры могут быть как импульсными так и непрерывными, работают на среднем уровне мощностей. Лазеры на красителях (в качестве рабочего тела используется жидкий раствор специальных красителей) характеризуются тем, что могут перестраиваться по длине волны в широком спектральном диапазоне. Полупроводниковые лазеры (ППЛ) занимают особое место в силу своих конструктивных особенностей и физических принципов работы. Небольшие размеры лазера определяются высоким КПД и необходимостью обеспечения высокой плотности тока накачки для достижения инверсной заселенности. У полупроводниковых лазеров накачка осуществляется небольшим током (десятки мА) при приложении напряжения около 2 - 3 В, тогда как у других типов лазеров требуются тысячи вольт. Необходимо заметить, что мы имеем ввиду исключительно инжекционные полупроводниковые лазеры, накачиваемые прямым током, проходящим через диодную структуру (laser diode). Недостатком ППЛ является большая расходимость излучения, что ограничивает его применение других областях, кроме лазерной терапии. ППЛ работают в диапазоне длин волн от 0,63 до 15 мкм. Самое широкое распространение, как в терапии , так и в хирургии получили лазеры в ближней инфракрасной (ИК) области (l =0,78-0,93 мкм) на основе кристалла Ga1-xAlxAs. В последнее время все большее распространение получают полупроводниковые лазеры на основе AlGaInP (l =0,633-0,64мкм), заменяющие традиционные He-Ne. Лазеры с длиной волны 0,67 мкм и средней мощностью до 10 Вт применяются также успешно и для фотодинамической терапии (ФДТ). Сообщается о начале производства зеленых (l =0,53мкм) и голубых (l =0,42мкм) полупроводниковых лазеров на основе Zn1-xCdxSe, мощностью несколько милливатт и наработкой на отказ до 1000 часов [18]. В таблице указаны основные типы полупроводниковых лазеров, применяемых в НИЛТ, их основные характеристики и фирмы-производители.
ЗаключениеМы попытались достаточно неглубоко исследовать очень широкую область современной медицины - применение лазерного излучения для восстановления здоровья человека. Что у нас получилось, судите сами. Все вышеописаное - безусловно, сплошная компиляция. Но мы и не претендуем на авторство по изложенным материалам и приносим глубочайшие благодарности авторам, список которых представлен ниже, за познавательный материал, помогший нам хоть немного заглянуть в этот удивительный мир - лазерную терапию. Литература:
|
Unismart II Это краткое руководство пользователя содержит основную информацию об устройстве, а также подробное описание использования этого устройства.... |
Руководство содержит описание устройства, порядок его установки и... |
||
Пищеварочный котел кэ-100 пояснительная записка Общая часть: Краткое описание аппаратов, сходных с поверяемым и описание поверяемого аппарата |
Инструкция по заполнению строк плана графика(ПГ) лекарственных закупок.... Краткое описание изменения функционирования еис в связи с выходом версии 2 приведено |
||
Программный комплекс «атлас» «подсчет запасов» Краткое руководство... В данном документе приведено краткое описание программного модуля «атлас подсчет запасов» |
Правила эксплуатации батареи 6 Заряд батареи 6 Утилизация батареи... Настоящее Руководство по эксплуатации содержит информацию об основных правилах эксплуатации смартфона Fly iq4413 Quad и краткое описание... |
||
Краткое функциональное описание Системы «bigl it» Настоящее функциональное описание является конфиденциальной информацией и не подлежит распространению без письменного согласования... |
Р о с c ийскаяфедераци я зао "предприятие в 1336 " токовый разветвитель тр-01 Настоящее техническое описание, инструкция по эксплуатации, паспорт предусматривают краткое описание конструкции токового разветвителя... |
||
Модель: Sabaj a 2 Цифровой усилитель для наушников Краткое руководство пользователя Ознакомьтесь с важной информацией о безопасности перед использованием устройства. Следуйте предупреждениям и инструкциям о мерах... |
Модель: Sabaj pha 2 Усилитель для наушников Краткое руководство пользователя Ознакомьтесь с важной информацией о безопасности перед использованием устройства. Следуйте предупреждениям и инструкциям о мерах... |
||
Техническое описание и инстpукция по эксплуатации Техническое описание и инструкция по эксплуатации содержит технические данные, описание принципа действия и устройства, а также сведения,... |
Руководство по эксплуатации (РЭ) содержит описание устройства, указа-ния... РЭ) содержит описание устройства, указа-ния по эксплуатации, техническому обслуживанию, ремонту и хранению до-рожной фрезы. Настоящее... |
||
Руководство по эксплуатации оборудования назначение кнопок на лицевой панели Краткое описание |
Датчик момента ротора Настоящее техническое описание, инструкция по эксплуатации, паспорт предусматривают краткое описание конструкции датчика момента... |
||
2 Устройство «Ответ» работает по задействованным и свободным абонентским... Техническое описание устройства оконечного «Ответ» предназначено для изучения изделия, содержит описание его устройства и принцип... |
Российскаяфедераци я зао "предприятие в 1336 " блок питания стабилизированный бпс 24 Настоящее техническое описание, инструкция по эксплуатации, паспорт предусматривают краткое описание конструкции блока питания стабилизированного... |
Поиск |