Скачать 460.11 Kb.
|
МЕТОДИЧЕСКАЯ РАЗРАБОТКАдля проведения практического занятия по гражданской обороне с персоналом учебных групп Санкт-Петербургского государственного университета телекоммуникаций им. профессора М.А. Бонч-Бруевича по теме № 4 базовой подготовки Применение приборов радиационной и химической разведки, контроля радиоактивного заражения и облучения, а также средств индивидуальной защиты г. Санкт-Петербург 2010 год Применение приборов радиационной и химической разведки, контроля радиоактивного заражения и облучения, а также средств индивидуальной защиты Учебная цель Отработка практических навыков в подготовке к работе и использовании приборов радиационной и химической разведки и контроля, а также в применении средств индивидуальной зашиты. Время - 2 часа. Место - территория объекта, учебный класс, учебный городок. Учебные вопросы 1. Приборы радиационной разведки и дозиметрического контроля, их применение. 2. Приборы химической разведки и химического контроля и их применение. 3. Средства индивидуальной защиты, их классификация, порядок использования, хранения и поддержания в готовности к выполнению АСДНР. Учебная литература и наглядные пособия 1. Технические и специальные средства обеспечения гражданской обороны и защиты от чрезвычайных ситуаций: Практическое пособие / Под общ. ред. В.Я. Перевощикова. - М.: ИРБ, 2006. 2. Организация и ведение гражданской обороны и защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера: Учебное пособие / Под общ. ред. Г.Н.Кириллова. — 4-е изд., перераб. и доп. - М.: ИРБ, 2007. 3. Инструкции к имеющимся приборам радиационной и химической разведки и контроля к средствам индивидуальной защиты. 4. Комплект плакатов «Средства защиты органов дыхания - противогазы, респираторы». Организационно-методические рекомендации Изучение каждого из имеющихся видов приборов и средств индивидуальной защиты следует начинать с объяснения их назначения, принципа действия, устройства и показа приемов пользования ими. После этого проводят тренировку по использованию приборов и средств защиты. Целесообразно при подготовке к занятиям рекомендовать слушателям заранее самостоятельно ознакомиться с материалами темы, чтобы большую часть времени уделить практической работе с имеющимися приборами и средствами защиты. ОСНОВНОЕ СОДЕРЖАНИЕ УЧЕБНЫХ ВОПРОСОВ Учебный вопрос 1. Приборы радиационной разведки и дозиметрического контроля, их применение При ядерном взрыве, авариях на АЭС и других радиационно-опасных объектах появляются и действуют ионизирующие излучения. Ионизация среды тем сильнее, чем больше мощность дозы проникающей радиации или радиоактивного излучения и длительнее их воздействие. Действие ионизирующих излучений на людей и животных заключается в тушении живых клеток организма, которое может привести к заболеванию различной степени тяжести, а в некоторых случаях и к смерти. Чтобы оценить влияние ионизирующих излучений на человека, надо учитывать их две основные характеристики: ионизирующую и проникающую способности. Альфа-излучение обладает высокой ионизирующей и слабой проникающей способностью. Обыкновенная одежда полностью защищает человека. Опасным является попадание альфа-частиц внутрь организма с воздухом, водой и пищей. Бета-излучение имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать какое-либо укрытие. Гамма- и нейтронное излучения обладают очень высокой проникающей способностью, защиту от них могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба. Методы обнаружения и измерения. В результате взаимодействия радиоактивного излучения с внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Эти процессы изменяют физико-химические свойства облучаемой среды. Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют ионизационный, химический, сцинтилляционный и другие методы. Ионизационный метод. Сущность его заключается в том, что под воздействием ионизирующих излучений в среде (газовом объеме) происходит ионизация молекул, в результате чего электропроводность этой среды увеличивается. Если в нее поместить два электрода, к которым приложено постоянное напряжение, то между электродами возникает направленное движение ионов, т.е. проходит так называемый ионизационный ток, который легко может быть измерен. Такие устройства называются детекторами излучений. В качестве детекторов в дозиметрических приборах используются ионизационные камеры и газоразрядные счетчики различных типов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б, В), ДП-ЗБ, ДП-22В и ИД-1. Химический метод. Его сущность состоит в том, что молекулы некоторых веществ в результате воздействия ионизирующих излучений распадаются и образуют новые химические соединения. Количество вновь образованных химических соединений можно определить различными способами. Наиболее удобным для этого является способ, основанный на изменении плотности окраски реактива, с которым вновь образованное химическое соединение вступает в реакцию. На этом методе основан принцип работы химического дозиметра гамма- и нейтронного излучения ДП-70МП. Сцинтилляционный метод. Этот метод основывается на том, что некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений - при возвращении в основное состояние атомы испускают фотоны определенной энергии (сцинтилляция). Фотоны видимого света улавливаются специальным прибором - фотоэлектронным умножителем, способным регистрировать каждую вспышку. Этот метод положен в основу работы индивидуального измерителя дозы ИД-11. Приборы, предназначенные для обнаружения и измерения ионизирующих излучений, называются дозиметрическими. Они обеспечивают ведение радиационной разведки, дозиметрического контроля радиоактивного облучения людей и животных, определение степени радиоактивного загрязнения объектов, техники, продовольствия, воды, окружающей среды и др. К дозиметрическим приборам относятся собственно дозиметры (измерители дозы), рентгенометры (измерители мощности дозы), индикаторы радиоактивности, радиометры, спектрометры и др. По месту и условиям эксплуатации приборы подразделяются на индивидуальные, подвижные (смонтированные на наземных машинах, судах и кораблях, летательных аппаратах) и стационарные. Дозиметрические приборы, применяемые нештатными аварийно-спасательными формированиями, по назначению можно подразделить на три группы. Первая группа - это рентгенометры-радиометры. Ими определяют уровни радиации на местности и зараженность различных объектов и поверхностей. К приборам этой группы относят измеритель мощности дозы ДП-5В (А, Б), ИМД-5. На подвижных средствах используются бортовой рентгенометр ДП-3Б, измерители мощности дозы ИМД-21, ИМД-22. Это основные приборы радиационной разведки. Вторая группа - дозиметры для определения индивидуальных доз облучения. В эту группу входят: дозиметр ДП-70МП, комплект индивидуальных измерителей доз ИД-11. Третья группа - бытовые дозиметрические приборы. Они дают возможность ориентироваться в радиационной обстановке на местности, иметь представление о зараженности различных предметов, воды и продуктов питания. Измеритель мощности дозы ДП-5В предназначен для измерения уровней
Бортовой рентгенометр ДП-ЗБ предназначен для измерения уровней гамма-радиации на местности. Прибор устанавливается на подвижных объектах (автомобиле, локомотиве, дрезине, речном катере и т.д.). Измеритель мощности дозы ИМД-22 имеет две отличительные особенности. Во-первых, он может производить измерения поглощенной дозы не только по гамма-, но и по нейтронному излучению, во-вторых, может использоваться как на подвижных средствах, так и на стационарных объектах (пунктах управления, защитных сооружениях). Поэтому и питание у него может быть от бортовой сети автомобиля, бронетранспортера или от обычной, которая применяется для освещения (220 В). Дозиметр ДП-70МП предназначен для измерения дозы гамма- и нейтронного облучения в пределах от 50 до 800 Р. Он представляет собой стеклянную ампулу, содержащую бесцветный раствор. Ампула помещена в пластмассовый (ДП-70МП) или металлический (ДП-70М) футляр. Он дает возможность определять дозы как при однократном, так и при многократном облучении. Масса дозиметра - 46 г. Носят его в кармане одежды. Измеритель дозы ИД-1 предназначен для измерения поглощенных доз гамма- и смешанного гамма-нейтронного излучения. В состав комплекта прибора входят десять измерителей дозы ИД-1 и
ионизационной камеры и конденсатора измерителя дозы. В качестве источника питания в зарядном устройстве служат 4 пьезоэлемента. В заряженном измерителе дозы нить электроскопа устанавливается на «0» шкалы. Диапазон измерения поглощенных доз - от 20 до 500 рад. Основная относительная погрешность прибора - ±20% в диапазоне от 50 до 500 рад. Сходимость показаний измерителей при их многократном облучении одной и той же дозой составляет ±4%. Масса комплекта в футляре - 2 кг, масса дозиметра - 40 г. Комплект индивидуальных дозиметров ДП-22В (ДП-24) предназначен для измерения индивидуальных доз гамма-излучения с помощью карманных прямопоказывающих дозиметров ДКП-50А (по конструкции аналогичных измерителям дозы ИД-1). В комплект ДП-22В (ДП-24) входят 50 (5) индивидуальных дозиметров ДКП-50А и зарядное устройство ЗД-5, которые хранятся и переносятся в упаковочном ящике. Принцип работы дозиметра ДКП-50А не отличается от принципа работы ИД-1. Диапазон измерений ДКП-50А - от 2 до 50 Р. Погрешность - ±10%. Питание зарядного устройства осуществляется от двух источников марки 1,6ПМЦ-У-8. Продолжительность работы одного комплекта источников питания - 30 ч. Масса дозиметра - 30 г, масса комплекта - 5,6 кг. Комплект измерителей дозы ИД-11 предназначен для измерения поглощенных доз смешанного гамма-нейтронного излучения с целью первичной диагностики степени тяжести радиационных поражений. В стандартный комплект входят 500 измерителей дозы ИД-11 (детекторов) и измерительное устройство. В качестве детектора в дозиметре используется пластинка из алюмофосфатного стекла, активированного серебром. Принцип работы ИД-11: при воздействии на детектор ИИ в нем образуются центры люминесценции, количество которых пропорционально поглощенной дозе, а при освещении детектора ультрафиолетовым светом (в измерительном устройстве ИУ-1) центры люминесцируют оранжевым светом с интенсивностью, пропорциональной поглощенной дозе, что и фиксируется в измерительном устройстве. Основу измерительного устройства составляет фотометрический блок, состоящий из загрузочного устройства и герметичного отсека с ФЭУ-84, лампой ультрафиолетового света ЛУФ-4 и четырьмя светофильтрами. Диапазон измерений поглощенной дозы прибором - от 10 до 1500 рад. Измерительное устройство оснащено шкалой с цифровым отсчетом измеряемой величины дозы. Время его прогрева перед измерениями - 30 мин. Время непрерывной работы - 20 ч. Время измерения дозы одним детектором не превышает 30 с. Основная относительная погрешность измерений не превышает ±15%. Детектор обладает способностью накапливать дозу при многократном облучении, сохранять ее не менее 12 мес. и допускает многократное измерение дозы с точностью, не превышающей основную погрешность. Масса ИД-11 не превышает 23 г, ИУ-1 - 18 кг. Комплект дозиметров термолюминесцентных КДТ-02М предназначен для измерения экспозиционной дозы и индикации радиоактивного излучения. Выпускается несколько модификаций комплекта: КДТ-02М, КДТ-02М-01, КДТ-02М-02. В состав комплекта входят: набор дозиметров ДПГ-02, ДПГ-03 и ДПС-11, устройство преобразования УПФ-02М, облучатель детекторов и набор пластин. В состав дозиметров ДПГ-02 и ДПС-11 входят три поликристаллических детектора на основе фтористого лития. Дозиметр ДПС-11 отличается от дозиметра ДП Г-02 тем, что в первом для регистрации излучения имеется окно, закрытое фольгой. В состав дозиметра ДПГ-03 входят 3 поликристаллических детектора на основе бората магния. Детекторы представляют собой таблетки диаметром 5 мм и толщиной 0,9 мм. В зависимости от комплектности поставок в состав прибора могут входить: • в комплект КДТ-02М - по 100 дозиметров ДПГ-02, ДПГ-03, ДПС-11; • в комплект КДТ-02М-01 - 1000 дозиметров ДПГ-03, 200 дозиметров ДПС-11; • в комплект КДТ-02М-02 - 1260 дозиметров ДПГ-03 и 260 дозиметров ДПС-11. Принцип работы КДТ-02М такой же, как и у ИД-11, только возбуждение накопленной энергии в детекторах осуществляется не за счет освещения, а за счет подогрева (термолюминесценция). СРП-88Н - геологоразведочный сцинтилляционный прибор - может быть с успехом использован как радиометр для контроля внешней среды и ведения разведки. Модификация прибора СРП-88Н-М специально предназначена для радиационного контроля сельскохозяйственных животных. Вывод показаний осуществляется 4-х значным цифровым жидкокристаллическим дисплеем и стрелочным прибором. Питание батарейное. Контроль радиоактивного облучения может быть индивидуальным и групповым. При индивидуальном методе дозиметры выдаются каждому человеку - обычно их получают командиры формирований, разведчики, водители машин и другие лица, выполняющие задачи отдельно от своих основных подразделений. Групповой метод контроля применяется для остального личного состава формирований и населения. В этом случае индивидуальные дозиметры выдаются одному-двум из звена, группы, команды или коменданту убежища, старшему по укрытию. Зарегистрированная доза засчитывается каждому как индивидуальная и записывается в журнал учета. Многие дозиметрические приборы, находящиеся на длительном хранении (ДП-5, ИМД-5, ИД-1, ДП-22В, ДП-24), сняты с производства; не выпускаются элементы питания к ДП-5, ДП-22В. Сроки хранения перечисленных приборов, согласно инструкциям, истекли. В настоящее время разработаны и прошли испытания новые, более совершенные приборы. К ним относятся: измеритель мощности дозы - индикатор-сигнализатор ИСП-РМ1703ГН, дозиметры-радиометры ДРБП-03, МКС-У, МКС-АТ1117М, МКС-РМ1402М, ДКС-96, универсальный дозиметр ДКС-АТ5350, а также измерители дозы - индивидуальные дозиметры ДКГ-05Д, Д-13, комплекс для индивидуального дозиметрического контроля ДВГ-02Т. Из измерителей мощности дозы одним из лучших по большинству параметров считается ДКС-АТ5350. Прибор измеряет дозы и мощности дозы гамма- и бета-излучений в широком диапазоне с погрешностью 2-5%. Серьезными недостатками прибора являются высокая цена и невозможность использования при температурах ниже 10°С. Предъявляемым требованиям соответствует дозиметр-радиометр универсальный МКС-У, который измеряет в широком диапазоне эквивалентную дозу (ЭД), мощность эквивалентной дозы (МЭД) гамма-излучения и поверхностную плотность бета-излучения. Диапазон рабочих температур от -40 до -50°С. Имеются ИК-порт, ЖК-дисплей и, дополнительно, солнечные батареи. В приборе предусмотрена возможность записи в энергонезависимую память до 4096 результатов измерений с записью до 100 номеров контролируемых объектов, а также независимая автоматическая запись дозовой нагрузки через каждые 15 минут.
|
Методическая разработка практического занятия по пм: «Младшая медицинская... На рецензию представлена методическая разработка практического занятия на тему «Медикаментозное лечение в сестринской практике»,... |
Методическая разработка предназначена для преподавателей для подготовки... Методическая разработка предназначена для проведения практического занятия по теме «Бронхиальная астма» в соответствии с рабочей... |
||
Методическая разработка практического занятия тема: «Устройство и... Методическая разработка предназначена для преподавателей медицинских училищ и колледжей для проведения практического занятия по теме... |
Учебно-методического центра по гражданской обороне и чрезвычайным... Изучить с обучаемыми действия при обнаружении предметов, похожих на взрывное устройство |
||
Методическая разработка практического занятия для преподавателя.... Волгоградский государственный медицинский университет кафедра педиатрии и неонатологии фув |
Методическая разработка практического занятия по теме «Выявление... Методическая разработка предназначена для проведения практического занятия с обучающимися по теме: «Выявление факторов, влияющих... |
||
Методическая разработка теоретического и практического занятия для... Методическая разработка предназначена для проведения теоретического и практического занятий «Клиническая фармакология антиангинальных... |
Методическая разработка практического занятия для преподавателя Тема:... План занятия стр. 11 13 |
||
Методическая разработка практического занятия для специальности 34. 02. 01 Сестринское дело Тема занятия №2 : Планирование реализации фармакотерапии по назначению врача. Лекарственные средства, влияющие на сердечно – сосудистую... |
Методическая разработка практического занятия по теме: «Проведение... Место проведения гбуз «Волгоградский областной клинический кардиологический центр» |
||
Методическая разработка для проведения практического занятия с персоналом... ... |
Методическая разработка для проведения занятия с личным составом... Тема № Применение приборов радиационной и химической разведки, контроля радио |
||
Методическая разработка практического занятия Мдк. 03. 01 Дифференциальная диагностика и оказание неотложной помощи на догоспитальном этапе |
Методическая разработка практического занятия по теме: «лекарственная... Цель занятия: освоение навыков постановки диагноза и тактики ведения пациентов с лекарственной болезнью (целенаправленный сбор анамнеза,... |
||
Методическая разработка практического занятия для преподавателя по... Государственное бюджетное профессиональное образовательное учреждение Самарской области |
Методическая разработка занятия по учебной дисциплине «Английский язык» Методическая разработка предназначена для преподавателей иностранного языка профессиональных образовательных учреждений |
Поиск |