Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы»




Скачать 0.64 Mb.
Название Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы»
страница 5/7
Тип Контрольная работа
rykovodstvo.ru > Руководство эксплуатация > Контрольная работа
1   2   3   4   5   6   7

6. Погрешности при радиопеленговании и рекомендации судоводителям


Точность радиопеленгования харак­теризуется величиной абсолютной по­грешности, равной разности между из­меренным и истинным направлениями на радиомаяк.

Погрешности могут быть случайны­ми, связанными с несовершенством ор­ганов чувств наблюдателя (зрение, слух) или с неумелым использованием аппаратуры, и систематическими, свя­занными с конструкцией радиопелен­гатора, условиями работы его на суд­не и с особенностями распространения радиоволн.

Погрешности из-за помех. Помимо полезного сигнала, получаемого при приеме электромагнитных колебаний, излучаемых радиомаяком, на входе пеленгаторного приемника появляются также сигналы от помех электрическо­го происхождения. Это атмосферные, промышленные помехи, сигналы ме­шающих станций и собственные шумы приемника. В слуховых радиопеленга­торах они проявляются в виде шума и треска в телефонах или в виде звуко­вых сигналов мешающей станции. В визуальных радиопеленгаторах та­кие помехи создают на экране кратко­временные засветки, легко различимые на фоне картины, получаемой от сиг­налов радиомаяка.

Уровень помех обычно не зависит от угла поворота рамки, и в пределах некоторого угла, называемого углом молчания, при минимуме восьмерочной диаграммы направленности напря­жение помех больше, чем амплитуда напряжения полезного сигнала. При пеленговании по минимуму в этом слу­чае невозможно точно определить на­правление на излучающую станцию.

В современных радиопеленгаторах предусмотрена возможность изменения ширины полосы пропускания приемни­ка. Помехи имеют значительно более широкий частотный спектр по сравне­нию со спектром полезного сигнала. Поэтому при более узкой полосе ча­стот наиболее высокочастотные состав­ляющие сигнала помехи срезаются и уровень шумов на выходе приемника уменьшается.

Береговой эффект. Погрешности из-за берегового эффекта появляются при радиопеленговании, когда электро­магнитная волна распространяется от радиомаяка до радиопеленгатора, пе­ресекая линию берега, или проходит вблизи нее. Причиной ошибок являет­ся изменение фронта волны при рас­пространении ее над неоднородной по­верхностью.

Если бы электромагнитная волна распространялась от радиомаяка в различных направлениях только над поверхностью моря, то фронт волны представлял бы собой окружность. При пеленговании, когда плоскость рамки совмещается с фронтом волны, указатель показал бы в любой точке истинное направление на радиомаяк.

При движении волны над сушей благодаря конечной величине проводи­мости почвы часть энергии поглоща­ется Землей. Возникающие при этом высокочастотные токи в верхних слоях Земли создают свое собственное поле, влияющее на поле волны. При нало­жении этих двух полей происходит из­менение фазы результирующего поля. Чем большую часть пути волна про­ходит над сушей, тем больше измене­ние фазы.

Вследствие этого фазовый фронт результирующей волны отличается от окружности, и указатель, связанный с рамкой, дает направление с погреш­ностью. Величина погрешности дости­гает 2 ... 3° при острых углах пересе­чения волной береговой линии и умень­шается до нуля в направлении, перпендикулярном берегу.

Чем дальше от береговой черты расположен радиопеленгатор в море, тем меньше погрешность берегового эффекта. Это объясняется тем, что при увеличении расстояния от берега уве­личивается затухание дополнительного поля, созданного высокочастотными токами Земли, следовательно, оно меньше влияет на изменение фазы ре­зультирующего поля волны. При рас­стояниях от берега, больших 10... ...20 миль, ошибка берегового эффек­та становится настолько мала, что ее можно не учитывать при пеленговании.

Поляризационные погрешности. При пеленговании на средних волнах в ноч­ное время и особенно при восходе и заходе Солнца появляются погрешно­сти, сопровождающиеся блужданием пеленга, изменением «расплывчато­сти» минимума и амплитуды сигнала на выходе приемника. Это явление но­сит название ночного эффекта, а по­грешности называются поляризацион­ными, так как причина их появления— смещение плоскости поляризации элек­тромагнитной волны, принимаемой на рамку после отражения от ионосферы.

В дневное время вследствие силь­ного поглощения энергии пространст­венной волны в слое D к месту приема приходит только нормально поляризо­ванная поверхностная волна, создаю­щая э. д. с. в вертикальных сторонах рамки и обеспечивающая обычную восьмерочную диаграмму направлен­ности.

Ночью слой D исчезает, поэтому пространственная волна, отражаясь от слоя Е, претерпевает незначительное поглощение и, имея достаточно боль­шую напряженность в месте приема, влияет на работу радиопеленгатора. Это влияние связано с изменением на­правления векторов напряженности поля отраженной волны.

Вследствие наклона такой волны относительно горизонта и наличия го­ризонтальной составляющей напря­женности электрического поля (верти­кальной составляющей магнитного по­ля) э. д. с. индуцируется и в горизон­тальных проводниках рамки. Диаграм­ма направленности в этом случае име­ет вид восьмерки, но ее минимумы смещены на 90° относительно нормаль­ного положения. В конечном счете это приводит к тому, что результирующая диаграмма направленности рамки мо­жет иметь смещение минимума на угол от 0 до 90°. Величина угловой погреш­ности зависит от соотношения ампли­туд и фаз поверхностной и простран­ственной волн. Кроме того, сдвиг по фазе вызывает появление внефазной составляющей поля пространственной волны, которая дает «расплывчатость» минимума. Ввиду непрерывного хаоти­ческого изменения состояния ионосфе­ры амплитуда и фаза пространствен­ной волны не остаются постоянными, поэтому величина угловой погрешно­сти и «расплывчатость» минимума все время изменяются.

В дневное время можно произво­дить радиопеленгование на любых расстояниях без поляризационных по­грешностей. Ночью пеленгование на расстоянии свыше 30... 50 миль от ра­диомаяка следует считать сомнитель­ным.

Радиодевиация. Радиодевиацией называются погрешности, связанные с влиянием на работу радиопеленгатора окружающих его проводников электри­ческого тока.

Электромагнитная волна, приходя­щая к судну, наводит э. д. с. не только в рамке и антенне радиопеленгатора, но также во всех металлических частях судна (корпусе, мачтах, трубах, таке­лаже, судовых антеннах и т. д.). Все эти части судна при протекании в них высокочастотных токов являются вто­ричными излучателями, создающими свое собственное электромагнитное поле. Поле вторичного излучения, имея ту же частоту, что. и поле основ­ной приходящей от радиомаяка волны, в общем случае не совпадает с послед­ним ни по фазе, ни по направлению.

Для удобства рассмотрения влия­ния вторичного поля на работу радио­пеленгатора его разделяют на две со­ставляющие, одна из которых (фаз­ная) совпадает, а другая (внефазная) составляющая сдвинута по фазе на 90° относительно первичного поля. Фазная составляющая приводит к сме­щению минимума диаграммы направ­ленности рамки, т. е. к появлению уг­ловой погрешности, которая называется радиодевиацией f. Внефазная со­ставляющая вызывает «расплывча­тость» минимума, что, в конечном сче­те, также не позволяет получать от­счет направления на радиомаяк без погрешности.

Для каждого излучателя, располо­женного на судне, характерна опреде­ленная зависимость величины радио­девиации от угла, составленного на­правлением приходящей волны с диа­метральной плоскостью судна. Несмот­ря на разнообразие форм вторичных излучателей, все они по характеру этой зависимости разделяются на два типа:

антенноподобные излучатели — вер­тикальные или наклонные проводники, имеющие соединение с корпусом суд­на только в своей нижней части,— мач­ты, стрелы, трубы, вентиляторы, стой­ки, судовые антенны и т. д.;

рамочные излучатели, т. е. опреде­ленным образом ориентированные кон­туры, созданные, например, палубой, двумя мачтами и соединяющими их штагами.

Корпус судна по характеру созда­ваемой радиодевиации относится так­же к рамочным излучателям.

В результате одновременного дей­ствия всех имеющихся на судне вто­ричных излучателей получается доста­точно сложная зависимость радиоде­виации f от радиокурсового угла q, вы­даваемого радиопеленгатором. Дейст­вительный курсовой угол на радиома­як р может быть определен из соотно­шения

p=q+f (1.6)

Кривая радиодевиации (ее зависи­мость от радиокурсового угла) может быть представлена в виде гармониче­ского ряда Фурье

f = ± А ± В sin q ± С cosq ± D sin 2q ± Е cos 2q ± … ,

где А, В. С. D. Е и др. — коэффициенты раз­ложения ряда, называемые коэффициентами радиодевиации; А — коэффициент постоянной радиодевиации, обусловленный несимметрич­ным расположением рамки радиопеленгатора относительно диаметрали судна или плоско­сти рамочного излучателя, а также — смеще­нием указателя; В, С—коэффициенты полу­круговой радиодевиации от антенно-подобных излучателей; О, Е-коэффициенты четвертной радиодевиации от рамочных излучателей и корпуса судна.

В реальных судовых условиях, где принимаются меры к устранению эф­фективно действующих антенноподобных и рамочных излучателей, радио­девиация обусловлена излучением кор­пуса судна. Такая радиодевиация име­ет явно выраженный четвертной ха­рактер (рис. 17), который может не­сколько искажаться от постоянной и полукруговой радиодевиации. Макси­мальное значение / может достигать 15—25°, поэтому должны быть приня­ты меры не только к определению ра­диодевиации, но и к уменьшению (ком­пенсации).

Обычно радиодевиация определяет­ся на специальном радиодевиацион-ном полигоне, где одновременно сни­маются отсчеты визуального пеленга­тора и радиопеленгатора при пеленго­вании одного и того же радиомаяка на различных радиокурсовых углах.

Определение радиодевиации произ­водят как после первоначальной уста­новки радиопеленгатора, так и после любых работ, связанных с изменением в такелаже и надстройках; при приеме палубного металлического груза, при изменении осадки и т. д.

При определении радиодевиации судно должно иметь исправный радио­пеленгатор, нормальную осадку и весь такелаж, закрепленный по-походному. Судовые антенны, удаленные от радио-пеленгаторной рамки менее чем на 12...15 м, отключают от передатчиков.

Радиодевиацию следует определять на рабочей волне радиопеленгатора (800...1000 м). Для определения харак­тера суммарной радиодевиации и по­следующего подсчета коэффициентов радиодевиации А, В, С, D и Е доста­точно определить ее значения для


Рис. 17. Кривая радиодевиация на реальном судне

восьми равноотстоящих радиокурсо­вых углов (обычно 0, 45, 90, 135, 180, 225, 270, 315°). Отсчеты снимают на плавной циркуляции судна или на пе­ременных курсах.

По полученным данным строят гра­фик суммарной радиодевиации и опре­деляют коэффициенты радиодевиации по специальным таблицам или форму­лам. Знание величины и знака коэффи­циентов дает возможность определить, каким излучателем они созданы, и, бо­лее того, уменьшить величину радио­девиации, устраняя причину появле­ния тех или иных коэффициентов или компенсируя их.

Наибольший интерес представляют коэффициенты A, D, Е, которые могут быть скомпенсированы. Компенсацию коэффициента А, показывающего, на­сколько вся кривая радиодевиации смещена вверх (+А) или вниз (—А), можно осуществить, вводя постоянную поправку смещением указателя.

Компенсацию коэффициентов ра­диодевиации ±D и ±Е в радиопелен­гаторах с неподвижными рамками про­изводят электрически либо путем под­ключения к рамкам радиодевиацион-ных дросселей (в гониометрических пеленгаторах), либо путем изменения коэффициентов усиления приемников (в визуальных пеленгаторах). Оба этих способа вносят дополнительную ошибку четвертого характера, кото­рая, будучи равной по величине, но противоположной по знаку радиоде­виации, устраняет последнюю.

После уничтожения (компенсации) радиодевиации проводят повторное оп­ределение остаточной радиодевиа­ции — обычно на полной циркуляции судна через 10...20°. По полученным данным строят кривую остаточной де­виации на специальном бланке, кото­рый вывешивают рядом с радиопелен­гатором. Кривая остаточной радиоде­виации не должна иметь максималь­ных значений, больших чем 1,5...2°.
7. Глобальная Морская Система Связи при Бедствии

Элементы ГМССБ

В ГМССБ используются:

• системы спутниковой связи ИНМАРСАТ и КОСПАС-САРСАТ

• системы наземной радиосвязи Морской подвижной службы в диапазонах УКВ, СВ-ПВ, и КВ.

Система ИНМАРСАТ

Система ИНМАРСАТ состоит из береговых станций спутниковой связи (БЗС), расположенных в различных странах и обеспечивающих выход в различные международные сети связи, судовых станций спутниковой связи (СЗС), и четырех спутников, расположенных в плоскости экватора на высоте около 36 тыс. Км. Период обращения спутников равен 24 часам, поэтому спутники кажутся неподвижными относительно Земли и видны с большей части земного шара.

Исключение составляют полярные районы. Спутники выполняют функции ретранслятора и обеспечивают:

• двухстороннюю связь между судном и берегом;

• прием сообщений от аварийного радиобуя (АРБ) в диапазоне 1.6 ГГц и передачу их в спасательно-координационный центр;

• передачу на суда циркулярных сообщений как аварийных, так и общего назначения.

Связь между судном и спутником осуществляется в диапазоне 1.6 и 1.5 ГГц, а между спутником и берегом в диапазонах 4 и 6 ГГц. Радиоволны этих диапазонов беспрепятственно проходят ионосферу и спутниковая связь практически не зависит от состояния атмосферы и времени суток.

Система КОСПАС-САРСАТ

Международная космическая система поиска аварийных судов КОСПАС-САРСАТ состоит из пунктов приема информации на суше (ПЛИ), спутников, запущенных на околополярную орбиту на высоте 800-1000 км и аварийных радиобуев (АРБ). Для использования в ГМССБ выпускаются АРБ, работающие в диапазоне 406 МГц.

Информация, принятая от такого буя, ретранслируется в реальном масштабе времени на ПЛИ, находящиеся в зоне видимости спутника, а также поступает в запоминающее устройство спутника для последующей передачи.

Координаты буя определяются по Доплеровскому сдвигу частоты, что является преимуществом по сравнению с АРБ, работающими а системе ИНМАРСАТ. Последние неподвижны относительно своих спутников и сведения о их местоположении можно получить только в том случае, если введены координаты в сообщение, передаваемое радиобуем.

Однако время доставки сообщения в системе КОСПАС-САРСАТ на СКЦ зависит от взаимного расположения спутников, ПЛИ и АРБ и с учетом времени ожидания подлета спутника к бую и времени движения спутника от буя до ближайшего ПЛИ может достигать 2 часов.

В системе ИНМАРСАТ сообщение от буя до СКЦ доставляется практически мгновенно.

АРБ оснащаются маломощным передатчиком, работающим на международной авиационной аварийной частоте 121.5 МГц, предназначенным для ближнего привода поисково-спасательных средств.

Цифровой избирательный вызов

Система цифрового избирательного вызова (ЦИВ) внедряется взамен слуховой вахты на частотах 500, 2182 кГц и 156.8 МГц (16 канал УКВ), а также в диапазоне КВ. Для ЦИВ выделены собственные частоты, для аварийной и общественной радиосвязи. ЦИВ служит для сообщения одной или нескольким радиостанциям о желании станции, пославшей вызов связаться с ними. Последующая связь возможна по радиотелефону или УБПЧ на отведенных для них частотах. В аварийных сообщениях ЦИВ передается идентификатор судна, сведения о месте, времени, характере бедствия и виде последующей связи.

Устройства ЦИВ используются в системах связи морской подвижной службы в полосе частот следующих диапазонов:

• УКВ-156... 174 МГц - на частоте 156.525 МГц;

• ПВ-1605... 4000 кГц- на частотах 2177, 2187.5 и 2189.5 кГц .

• КВ-4...27.5 МГц - 5 частот для аварийной связи в полосах 4, 6, 8, 12 и 16 МГц и частоты для коммерческого ЦИВ;

НАВТЕКС

Международная автоматизированная система передачи навигационных и метеорологических извещений, предупреждений и другой срочной информации в режиме узкополосной буквопечатающей связи (НАВТЕКС) включает в себя береговые станции работающие на частоте 518 кГц по определенному расписанию и передающие информацию на английском языке , а также приемники НАВТЕКС, установка которых на судах обязательна с 1993 года.

НАВТЕКС является компонентом Всемирной службы навигационных предупреждений, и обслуживает прибрежные районы. Дальность действия системы НАВТЕКС зависит от чувствительности приемника, мощности берегового передатчика, его антенны и других факторов и не превышает 400 миль. За пределами действия системы НАВТЕКС информация по безопасности мореплавания передается через ИНМАРСАТ или с помощью УБПЧ на отведенных для этой цели восьми фиксированных частотах диапазона КВ.

Радиолокационное обнаружение

Для обнаружения места бедствия помимо аварийных радиобуев (АРБ), систем ИНМАРСАТ, КОСПАС-САРСАТ и УКВ ЦИВ ( 70 канал УКВ диапазона, частота 156.525 МГц), в ГМССБ предусмотрено использование радиолокационного ответчика (РЛО), работающего в диапазоне 3.2 см.

При облучении радиолокационного ответчика радаром, работающим в диапазоне 3.2 см, на экране радара появляется засветка в виде 12 точек или дуг, в зависимости от расстояния до РЛО и выбранной шкалы дальности радара.

По этим засветкам можно определить местоположение спасательного средства, с установленным на нем радиолокационным ответчиком.
1   2   3   4   5   6   7

Похожие:

Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа по дисциплине «Английский язык»
Контрольная работа предназначена для студентов специальности: 08. 02. 01 «Строительство и эксплуатация зданий и сооружений», 4 курс...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Методические указания по выполнению контрольной работы Контрольная...
Контрольная работа выполняется по учебно-методическому пособию Авиационный английский язык. Контрольная работа : учеб метод пособие...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Порядок ведения и оформления тетрадей по русскому языку и литературе
Например: Проверочная работа. Самостоятельная работа. Контрольная работа. Работа над ошибками. Изложение. Сочинение
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Пояснительная записка Контрольная работа по дисциплине «Гражданское право 1»
Контрольная работа по дисциплине «Гражданское право 1» (общая часть гражданского права) состоит из 10 вариантов. Студент выбирает...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа состоит из решения трех задач и теоретического вопроса
В процессе изучения дисциплины «Общий курс транспорта» каждый студент 3 курса факультета «Управление процессами перевозок» должен...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа №3 для 8 класса по физике (розш)
Контрольная работа состоит из двух частей, включающих в себя 11 заданий. Часть 1 содержит 8 заданий с кратким ответом, часть 2 содержит...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Предметный элективный курс по физике
Курс строится на материале тем «Постоянный ток», «Переменный ток», «Соединение проводников», «Полупроводниковые приборы»
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Мониторинг за курс 4 класса. Мониторинг подготовки обучающихся 4-х классов
Основой мониторинга подготовки по каждому из учебных предметов служит единый текст. Текст является оригинальным (не адаптированным...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Учебному предмету «коррекционный курс» для обучающихся с умственной...
Примерная рабочая программа по учебному предмету «коррекционный курс»дляобучающихся с умственной отсталостью (интеллектуальными нарушениями)...
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа №1 по теме «Организм. Молекулярный уровень»
Лабораторная работа №2 «Изучение клеток и тканей растений и животных на готовых микропрепаратах»
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа составлена в соответствии с рабочей программой...
Контрольная работа составлена в соответствии с рабочей программой по пм. 01 Техническое обслуживание и ремонт автотранспорта
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Контрольная работа по биологии по теме «Общая биология»
На выполнение диагностической работы по биологии отводится 45 минут. Работа включает в себя 20 заданий
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Специалисты Управления образованием, методисты мку «Информационно-методический...
«О реализации региональной системы оценки качества образования в 2017-2018 учебном году», приказа Управления образование от 28. 08....
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Н. С. Лесков (3 ч.) -2 шт. I к
Контрольная работа по дисциплине «Русский язык и культура речи» за 1 п/г – III к
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon Методическое пособие, программы и контрольная работа по курсу "фотограмметрия"....
Методическое пособие, программы и контрольная работа по курсу "фотограмметрия". –М.: МиигаиК, 2012, -74 с
Контрольная работа №1 за VI курс по предмету: «радионавигационные приборы» icon № ( 2 часа )
Курс строится на материале тем «Постоянный ток», «Переменный ток», «Соединение проводников», «Полупроводниковые приборы»

Руководство, инструкция по применению






При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск